Centromeres are essential chromosomal components that ensure proper cell division by serving as assembly sites for kinetochores, which connect chromosomes to spindle microtubules. Centromeres are marked by the evolutionarily conserved centromere-specific histone H3 variant, CENP-A, which is deposited into centromere nucleosomes during G1 in human cells. Centromeres retain cohesin, a ring-like protein complex during mitosis, protecting sister chromatid cohesion and centromere transcription to prevent chromosome missegregation.
View Article and Find Full Text PDFCentromere protein A (CENP-A) nucleosomes containing the centromere-specific histone H3 variant CENP-A represent an epigenetic mark that specifies centromere position. The Mis18 complex is a licensing factor for new CENP-A deposition via the CENP-A chaperone, Holliday junction recognition protein (HJURP), on the centromere chromatin. Chicken KINETOCHORE NULL2 (KNL2) (ggKNL2), a Mis18 complex component, has a CENP-C-like motif, and our previous study suggested that ggKNL2 directly binds to the CENP-A nucleosome to recruit HJURP/CENP-A to the centromere.
View Article and Find Full Text PDFChromosome Res
March 2022
The CENP-A nucleosome is a key structure for kinetochore assembly. Once the CENP-A nucleosome is established in the centromere, additional proteins recognize the CENP-A nucleosome to form a kinetochore. CENP-C and CENP-N are CENP-A binding proteins.
View Article and Find Full Text PDFThe kinetochore is essential for faithful chromosome segregation during mitosis. To form a functional kinetochore, constitutive centromere-associated network (CCAN) proteins are assembled on the centromere chromatin that contains the centromere-specific histone CENP-A. CENP-C, a CCAN protein, directly interacts with the CENP-A nucleosome to nucleate the kinetochore structure.
View Article and Find Full Text PDF