Publications by authors named "Rebecca K Reh"

Early-life experience enduringly sculpts thalamocortical (TC) axons and sensory processing. Here, we identify the very first synaptic targets that initiate critical period plasticity, heralded by altered cortical oscillations. Monocular deprivation (MD) acutely induced a transient (<3 h) peak in EEG γ-power (~40 Hz) specifically within the visual cortex, but only when the critical period was open (juvenile mice or adults after dark-rearing, -deletion, or diazepam-rescued GAD65-deficiency).

View Article and Find Full Text PDF

Electroencephalography (EEG) has been widely adopted by the developmental cognitive neuroscience community, but the application of machine learning (ML) in this domain lags behind adult EEG studies. Applying ML to infant data is particularly challenging due to the low number of trials, low signal-to-noise ratio, high inter-subject variability, and high inter-trial variability. Here, we provide a step-by-step tutorial on how to apply ML to classify cognitive states in infants.

View Article and Find Full Text PDF

Perceptual attunement to the native phonetic repertoire occurs over the first year of life: an infant's discrimination of non-native phonetic contrasts declines while their discrimination of native phonetic contrasts improves, with the timing of change consistent with sensitive periods. The statistics of speech sound distributions is one source of input used to collapse non-native phonetic category boundaries, while sharpening native ones. Distributional learning can be a domain-general mechanism, yet given the timing of perceptual attunement, we hypothesized that this learning mechanism may be maturationally delimited in the content domain of phonetic categories.

View Article and Find Full Text PDF

Brain plasticity is dynamically regulated across the life span, peaking during windows of early life. Typically assessed in the physiological range of milliseconds (real time), these trajectories are also influenced on the longer timescales of developmental time (nurture) and evolutionary time (nature), which shape neural architectures that support plasticity. Properly sequenced critical periods of circuit refinement build up complex cognitive functions, such as language, from more primary modalities.

View Article and Find Full Text PDF

Background: Posttraumatic stress disorder (PTSD) is a prevalent psychiatric disorder precipitated by exposure to extreme traumatic stress. Yet, most individuals exposed to traumatic stress do not develop PTSD and may be considered psychologically resilient. The neural circuits involved in susceptibility or resiliency to PTSD remain unclear, but clinical evidence implicates changes in the noradrenergic system.

View Article and Find Full Text PDF

The presence of large-amplitude, slow waves in the EEG is a primary characteristic that distinguishes cerebral activity during sleep from that which occurs during wakefulness. Although sleep-active neurons have been identified in other brain areas, neurons that are specifically activated during slow-wave sleep have not previously been described in the cerebral cortex. We have identified a population of cells in the cortex that is activated during sleep in three mammalian species.

View Article and Find Full Text PDF