Nat Comput Sci
August 2025
Directly visualizing chemical trajectories offers insights into catalysis, gas-phase reactions and photoinduced dynamics. Tracking the transformation of chemical species is best achieved by coupling theory and experiment. Here we developed Digital Twin for Chemical Science (DTCS) v.
View Article and Find Full Text PDFMetal-mediated electrochemical synthesis of ammonia (NH) is a promising method to activate N at room temperature. While a Li-mediated approach has been optimized to produce NH at high current density and selectivity, Li's scarcity and its highly negative plating potential limit scalability and energy efficiency. Alternative mediators have been proposed, but only Ca has shown some promise, achieving ≈50% Faradaic efficiency (FE), though requiring voltages beyond -3 V.
View Article and Find Full Text PDFInelastic photoelectron scattering (IPES) by gas molecules, a critical phenomenon observed in ambient pressure X-ray photoelectron spectroscopy (APXPS), complicates spectral interpretation due to kinetic energy loss in the primary spectrum and the appearance of additional features at higher binding energies. In this study, we systematically investigate IPES in various gas environments using APXPS, providing detailed insights into interactions between photoelectrons emitted from solid surfaces and surrounding gas molecules. Core-level XPS spectra of Au, Ag, Zn, and Cu metals were recorded over a wide kinetic energy range in the presence of CO, N, Ar, and H gases, demonstrating the universal nature of IPES across different systems.
View Article and Find Full Text PDFCs is a promoter of Cu-based catalysts for the synthesis of alcohols from CO hydrogenation. Scanning tunneling microscopy and ambient-pressure x-ray photoelectron spectroscopy were used to study the morphology and chemical properties of surfaces generated by the deposition of cesium on CuO/Cu(111) and Cu(111) substrates. CsO nanostructures were formed after Cs metal was deposited on CuO/Cu(111) at 300 K.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2019
α-Dystroglycan (α-DG) is a highly glycosylated basement membrane receptor that is cleaved by the proprotein convertase furin, which releases its N-terminal domain (α-DGN). Before cleavage, α-DGN interacts with the glycosyltransferase LARGE1 and initiates functional O-glycosylation of the mucin-like domain of α-DG. Notably, α-DGN has been detected in a wide variety of human bodily fluids, but the physiological significance of secreted α-DGN remains unknown.
View Article and Find Full Text PDFDisorder-Order transitions in a weakly adsorbed two-dimensional film have been identified for the first time using ambient-pressure scanning tunneling microscopy (AP-STM) and X-ray photoelectron spectroscopy (AP-XPS). As of late, great effort has been devoted to the capture, activation and conversion of carbon dioxide (CO2), a ubiquitous greenhouse gas and by-product of many chemical processes. The high stability and non-polar nature of CO2 leads to weak bonding with well-defined surfaces of metals and oxides.
View Article and Find Full Text PDFThe results of kinetic tests and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS) show the important role played by a ZnO-copper interface in the generation of CO and the synthesis of methanol from CO hydrogenation. The deposition of nanoparticles of ZnO on Cu(100) and Cu(111), θ < 0.3 monolayer, produces highly active catalysts.
View Article and Find Full Text PDFMuscular dystrophy is characterized by progressive skeletal muscle weakness and dystrophic muscle exhibits degeneration and regeneration of muscle cells, inflammation and fibrosis. Skeletal muscle fibrosis is an excessive deposition of components of the extracellular matrix including an accumulation of Collagen VI. We hypothesized that a reduction of Collagen VI in a muscular dystrophy model that presents with fibrosis would result in reduced muscle pathology and improved muscle function.
View Article and Find Full Text PDF