Publications by authors named "Rebecca A Wernis"

Article Synopsis
  • Anthropogenic emissions significantly impact the chemistry of secondary organic aerosol (SOA) formation from isoprene in forested environments.
  • Research conducted in the Amazon and Southeastern U.S. shows that tracer concentrations for isoprene-derived SOA correlate with particulate sulfate, indicating that a reduction in sulfate can lead to a reduction in SOA.
  • The study highlights the dominance of organosulfates in isoprene/NO pathway SOA and reveals the relationship between particle acidity and isoprene-derived compounds, challenging traditional views that associate these compounds primarily with human influence.
View Article and Find Full Text PDF

Organosulfates are formed in the atmosphere from reactions between reactive organic compounds (such as oxidation products of isoprene) and acidic sulfate aerosol. Here we investigated speciated organosulfates in an area typically downwind of the city of Manaus situated in the Amazon forest in Brazil during "GoAmazon2014/5" in both the wet season (February-March) and dry season (August-October). We observe products consistent with the reaction of isoprene photooxidation products and sulfate aerosols, leading to formation of several types of isoprene-derived organosulfates, which contribute 3% up to 42% of total sulfate aerosol measured by aerosol mass spectrometry.

View Article and Find Full Text PDF
Article Synopsis
  • BVOCs from the Amazon are the largest global source of organic carbon emissions, primarily consisting of terpenoid compounds that transform in the atmosphere into oxygenated gases and secondary organic aerosol (SOA).
  • Researchers collected samples and conducted hourly measurements at a rural site near Manaus to study the emissions of these compounds during different seasons.
  • Findings indicated that sesquiterpenes significantly contribute to reactive ozone loss, with a rough estimate suggesting that their oxidation contributes around 1% to submicron organic aerosol mass, likely underestimating their total impact.
View Article and Find Full Text PDF