Human immunodeficiency virus type 1 (HIV-1) particle assembly is driven by the Gag structural polyprotein and is a crucial step in the production of new virus particles. Elucidating the details of this process is necessary to fully understand the virus replication cycle. Real-time measurements of virus particle biogenesis in living cells have proved challenging, and most of our knowledge of this process to date has come from total internal fluorescence microscopy of labeled Gag at the bottom plasma membrane (PM) of adherent cells.
View Article and Find Full Text PDFAssembly of human T-cell leukemia virus type 1 (HTLV-1) particles is initiated by the trafficking of virally encoded Gag polyproteins to the inner leaflet of the plasma membrane (PM). Gag-PM interactions are mediated by the matrix (MA) domain, which contains a myristoyl group (myr) and a basic patch formed by lysine and arginine residues. For many retroviruses, Gag-PM interactions are mediated by phosphatidylinositol 4,5-bisphosphate [PI(4,5)P]; however, previous studies suggested that HTLV-1 Gag-PM interactions and therefore virus assembly are less dependent on PI(4,5)P.
View Article and Find Full Text PDFJ Phys Chem B
July 2020
The relation between co- and post-translational protein folding and aggregation in the cell is poorly understood. Here, we employ a combination of fluorescence anisotropy decays in the frequency domain, fluorescence-detected solubility assays, and NMR spectroscopy to explore the role of the ribosome in protein folding within a biologically relevant context. First, we find that a primary function of the ribosome is to promote cotranslational nascent-protein solubility, thus supporting cotranslational folding even in the absence of molecular chaperones.
View Article and Find Full Text PDFOsteogenesis Imperfecta (OI), a hereditary connective tissue disease in collagen that arises from a single Gly → X mutation in the collagen chain, varies widely in phenotype from perinatal lethal to mild. It is unclear why there is such a large variation in the severity of the disease considering the repeating (Gly-X-Y)n sequence and the uniform rod-like structure of collagen. We systematically evaluate the effect of local (Gly-X-Y)n sequence around the mutation site on OI phenotype using integrated bio-statistical approaches, including odds ratio analysis and decision tree modeling.
View Article and Find Full Text PDFThe mechanism by which enzymes recognize the "uniform" collagen triple helix is not well understood. Matrix metalloproteinases (MMPs) cleave collagen after the Gly residue of the triplet sequence Gly∼[Ile/Leu]-[Ala/Leu] at a single, unique, position along the peptide chain. Sequence analysis of types I-III collagen has revealed a 5-triplet sequence pattern in which the natural cleavage triplets are always flanked by a specific distribution of imino acids.
View Article and Find Full Text PDF