Trichoderma virens is a plant beneficial fungus well-known for its biocontrol, herbicidal and growth promotion activity. Earlier, we identified HAS (HA-synthase, a terpene cyclase) and GAPDH (glyceraldehyde-3-phosphate dehydrogenase) to be involved in the production of multiple non-volatiles and non-volatile+volatile metabolites, respectively. The present study delineates the function of HAS and GAPDH in regulating herbicidal activity, using the model plant Arabidopsis thaliana.
View Article and Find Full Text PDFEremophilanes are a large group of "sesquiterpenes" produced by plants and fungi, with more than 180 compounds being known in fungi alone. Many of these compounds are phytotoxic, antimicrobial, anticancer and immunomodulators, and hence are of great economic values. Acremeremophilanes A to O have earlier been reported in a marine isolate of sp.
View Article and Find Full Text PDFTrichoderma virens produces viridin/viridiol, heptelidic (koningic) acid, several volatile sesquiterpenes and gliotoxin (Q strains) or gliovirin (P strains). We earlier reported that deletion of the terpene cyclase vir4 and a glyceraldehyde-3-phosphate dehydrogenase (GAPDH, designated as vGPD) associated with the "vir" cluster abrogated the biosynthesis of several volatile sesquiterpene metabolites. Here we show that, the deletion of this GAPDH also impairs the biosynthesis of heptelidic acid (a non-volatile sesquiterpene), viridin (steroid) and gliovirin (non-ribosomal peptide), indicating regulation of non-volatile metabolite biosynthesis by this GAPDH that is associated with a secondary metabolism gene cluster.
View Article and Find Full Text PDFTrichoderma virens colonizes roots and develops a symbiotic relationship with plants where the fungal partner derives nutrients from plants and offers defence, in return. Tsp1, a small secreted cysteine-rich protein, was earlier found to be upregulated in co-cultivation of T. virens with maize roots.
View Article and Find Full Text PDFActa Crystallogr F Struct Biol Commun
June 2020
Small secreted cysteine-rich proteins (SSCPs) from fungi play an important role in fungi-host interactions. The plant-beneficial fungi Trichoderma spp. are in use worldwide as biocontrol agents and protect the host plant from soil-borne as well as foliar pathogens.
View Article and Find Full Text PDFTrichoderma spp. are widely used as commercial biofungicides, and most commercial formulations are conidia based. Identification of genes that regulate conidiation would thus be of help in genetic reprogramming of these species to optimize sporulation.
View Article and Find Full Text PDFFungal Biol Biotechnol
June 2018
Background: Cytochrome P450s form an important group of enzymes involved in xenobiotics degradation and metabolism, both primary and secondary. These enzymes are also useful in industry as biotechnological tools for bioconversion and a few are reported to be involved in pathogenicity. spp.
View Article and Find Full Text PDFThe widely used biotechnologically important fungi belonging to the genus Trichoderma are rich sources of secondary metabolites. Even though the genomes of several Trichoderma spp. have been published, and data are available on the genes involved in biosynthesis of non-ribosomal peptide synthetases and polyketide synthases, no genome-wide data are available for the terpenoid biosynthesis machinery in these organisms.
View Article and Find Full Text PDF