Publications by authors named "Raphael D Urban"

Despite being recognized primarily as an analytical technique, mass spectrometry also has a large potential as a synthetic tool, enabling access to advanced synthetic routes by reactions in charged microdroplets or ionic thin layers. Such reactions are special and proceed primarily at surfaces of droplets and thin layers. Partial solvation of the reactants is usually considered to play an important role for reducing the activation barrier, but many mechanistic details still need to be clarified.

View Article and Find Full Text PDF
Article Synopsis
  • Effective control of chemical reaction conditions can optimize time and energy resources in labs and industry, particularly through better understanding how parameter changes affect reaction rates.
  • The electrospray ionization (ES) technique, used in mass spectrometry, creates droplets that serve as tiny reaction vessels, where dynamics can significantly enhance reaction rates.
  • Experiments revealed that manipulating conditions such as droplet size, flight time, and temperature led to over 90% conversion rates in key reactions, demonstrating the potential for increased efficiency in chemical processes.
View Article and Find Full Text PDF

We report an approach for the online coupling of digital microfluidics (DMF) with mass spectrometry (MS) using a chip-integrated microspray hole (μSH). The technique uses an adapted electrostatic spray ionization (ESTASI) method to spray a portion of a sample droplet through a microhole in the cover plate, allowing its chemical content to be analyzed by MS. This eliminates the need for chip disassembly or the introduction of capillary emitters for MS analysis, as required by state-of-the-art.

View Article and Find Full Text PDF

By the on-chip integration of a droplet generator in front of an emitter tip, droplets of non-polar solvents are generated in a free jet of an aqueous matrix. When an IR laser irradiates this free liquid jet consisting of water as the continuous phase and the non-polar solvent as the dispersed droplet phase, the solutes in the droplets are ionized. This ionization at atmospheric pressure enables the mass spectrometric analysis of non-polar compounds with the aid of a surrounding aqueous matrix that absorbs IR light.

View Article and Find Full Text PDF

The visible-light photocatalytic E/Z isomerization of olefins can be mediated by a wide spectrum of triplet sensitizers (photocatalysts). However, the search for the most efficient photocatalysts through screenings in photo batch reactors is material and time consuming. Capillary and microchip flow reactors can accelerate this screening process.

View Article and Find Full Text PDF

There is a constant need for the development of easy-to-operate systems for the rapid and unambiguous identification of bacterial pathogens in drinking water without the requirement for time-consuming culture processes. In this study, we present a disposable and low-cost lab-on-a-chip device utilizing a nanoporous membrane, which connects two stacked perpendicular microfluidic channels. Whereas one of the channels supplies the sample, the second one attracts it by potential-driven forces.

View Article and Find Full Text PDF