Publications by authors named "Ramiro A Ramirez-Valdez"

Article Synopsis
  • Melanoma antigen gene (MAGE)-type antigens are effective targets for cancer immunotherapy, as they appear in cancer cells but not in normal tissues, with the exception of some male germline cells.
  • Researchers focused on the mouse P1A antigen, identifying a specific CD8 T-cell epitope presented by the H-2D molecule in C57BL/6 mice, using adenovirus and modified vaccinia Ankara vaccines to enhance immune responses.
  • The study successfully induced a strong immune response targeting a specific 9-amino acid peptide from the P1A antigen, leading to protection against specific tumors and the identification of T-cell receptors (TCRs) that could be used for adoptive cell therapy.
View Article and Find Full Text PDF

Therapeutic neoantigen cancer vaccines have limited clinical efficacy to date. Here, we identify a heterologous prime-boost vaccination strategy using a self-assembling peptide nanoparticle TLR-7/8 agonist (SNP) vaccine prime and a chimp adenovirus (ChAdOx1) vaccine boost that elicits potent CD8 T cells and tumor regression. ChAdOx1 administered intravenously (i.

View Article and Find Full Text PDF

Therapeutic cancer vaccines are designed to increase tumor-specific T cell immunity. However, suppressive mechanisms within the tumor microenvironment (TME) may limit T cell function. Here, we assessed how the route of vaccination alters intratumoral myeloid cells.

View Article and Find Full Text PDF

Background: The clinical benefit of immune checkpoint blockade (ICB) therapy is often limited by the lack of pre-existing CD8 T cells infiltrating the tumor. In principle, CD8 T-cell infiltration could be promoted by therapeutic vaccination. However, this remains challenging given the paucity of vaccine platforms able to induce the strong cytotoxic CD8 T-cell response required to reject tumors.

View Article and Find Full Text PDF

Personalized cancer vaccines are a promising approach for inducing T cell immunity to tumor neoantigens. Using a self-assembling nanoparticle vaccine that links neoantigen peptides to a Toll-like receptor 7/8 agonist (SNP-7/8a), we show how the route and dose alter the magnitude and quality of neoantigen-specific CD8 T cells. Intravenous vaccination (SNP-IV) induced a higher proportion of TCF1PD-1CD8 T cells as compared to subcutaneous immunization (SNP-SC).

View Article and Find Full Text PDF
Article Synopsis
  • Personalized cancer vaccines that target unique tumor-specific neoantigens show promise, but variability in these neoantigens creates manufacturing challenges.
  • The researchers developed a new vaccine platform (SNP-7/8a) using charge-modified peptide-TLR-7/8a conjugates that can self-assemble into uniform nanoparticles, ensuring consistent loading of diverse neoantigens.
  • In experiments, SNP-7/8a successfully triggered CD8 T cell responses against nearly 50% of tested neoantigens in mice, and also stimulated T cells in nonhuman primates, indicating its potential for broad application in cancer immunotherapy.
View Article and Find Full Text PDF

Peptide immunogens provide an approach to focus antibody responses to specific neutralizing sites on the HIV envelope protein (Env) trimer or on other pathogens. However, the physical characteristics of peptide immunogens can limit their pharmacokinetic and immunological properties. Here, we have designed synthetic "star" nanoparticles based on biocompatible N-[(2-hydroxypropyl)methacrylamide] (HPMA)-based polymer arms extending from a poly(amidoamine) (PAMAM) dendrimer core.

View Article and Find Full Text PDF

Small molecule Toll-like receptor-7 and -8 agonists (TLR-7/8a) can be used as vaccine adjuvants to induce CD8 T cell immunity but require formulations that prevent systemic toxicity and focus adjuvant activity in lymphoid tissues. Here, we covalently attached TLR-7/8a to polymers of varying composition, chain architecture and hydrodynamic behavior (∼300 nm submicrometer particles, ∼10 nm micelles and ∼4 nm flexible random coils) and evaluated how these parameters of polymer-TLR-7/8a conjugates impact adjuvant activity in vivo. Attachment of TLR-7/8a to any of the polymer compositions resulted in a nearly 10-fold reduction in systemic cytokines (toxicity).

View Article and Find Full Text PDF