Publications by authors named "Ramasamy Subbaiya"

The cultivation of citrus fruits has increased significantly around the globe due to rising consumer demand. The citrus fruit processing industry produces approx. 110 to 120 million tonnes of citrus fruit waste worldwide every year.

View Article and Find Full Text PDF

This review provides a comprehensive exploration of the intricate processes involved in wound healing and bone fracture recovery, delving into the phases and cellular activities that underlie these critical physiological events. The integration of network pharmacology and traditional medicine approaches in the context of wound healing and bone fracture is thoroughly examined, highlighting the potential synergies between modern scientific methodologies and age-old remedies. The Research methodology for network pharmacology studies is meticulously outlined, encompassing data mining, target identification, network construction and analysis, and validation techniques.

View Article and Find Full Text PDF

Explosives are perilous and noxious to aquatic biota disrupting their endocrinal systems. Supplementarily, they exhibit carcinogenic, teratogenic and mutagenic effects on humans and animals. Henceforth, the current study has been targeted to biotransform the explosive, 2, 4, 6 trinitrophenol (TNP) by wetland peroxidase from Streptomyces coelicolor.

View Article and Find Full Text PDF

The suitability of biochar as a supplement for environmental restoration varies significantly based on the type of feedstocks used and the parameters of the pyrolysis process. This study comprehensively examines several aspects of biochar's potential benefits, its capacity to enhance crop yields, improve nutrient availability, support the co-composting, water restoration and enhance overall usage efficiency. The supporting mechanistic evidence for these claims is also evaluated.

View Article and Find Full Text PDF
Article Synopsis
  • Biofuels like biogas have emerged as a key source of bioenergy, helping to meet global energy demands while cutting down greenhouse gas emissions.
  • The process of enzyme hydrolysis is crucial in bioethanol production, as it converts biomass into sugars that can be fermented, with ongoing research focused on improving enzyme efficiency for cost-effectiveness.
  • The paper explores various methods and strategies involving enzyme hydrolysis, microbial fermentation, microbial fuel cells, and anaerobic digestion to generate bioethanol and bioenergy from lignocellulosic biomasses such as agricultural waste and algae.
View Article and Find Full Text PDF

Anthropogenic toxins are discharged into the environment and distributed through a variety of environmental matrices. Trace contaminant detection and analysis has advanced dramatically in recent decades, necessitating further specialized technique development. These pollutants can be mobile and persistent in small amounts in the environment, and ecological receptors will interact with it.

View Article and Find Full Text PDF

Microplastics have been identified as an emerging pollutant due to their irrefutable prevalence in air, soil, and particularly, the aquatic ecosystem. Wastewater treatment plants (WWTPs) are seen as the last line of defense which creates a barrier between microplastics and the environment. These microplastics are discharged in large quantities into aquatic bodies due to their insufficient containment during water treatment.

View Article and Find Full Text PDF

Bacterial biomass may serve as an important environmental cleaning agent to toxic heavy metal ions at the expense of chemical processes which are not environmentally friendly. This study aimed at characterizing bacterial agents which could serve as a potential in situ bioremediation agent at the site of isolation. The characterization was performed using both phenotypic and molecular approaches.

View Article and Find Full Text PDF

Reducing CO emissions using biomass is gaining popularity as an environmentally friendly strategy. Due to high growth rates, low production costs, and ability to withstand harsh conditions, microalgae have become quite popular. Microalgae may also undertake photosynthesis, converting CO and solar energy into sugar before becoming biomass, making them an excellent source of renewable and promising biofuels.

View Article and Find Full Text PDF

Graphene has revolutionized the field of energy and storage sectors. Out of the total number of nosocomial infections diagnosed all around the world, the majority of the cases (around 70%) are found to be due to the medical device or assistance utilized while treating the patient. Combating these diseases is vital as they cause a nuisance to the patients and medical practitioners.

View Article and Find Full Text PDF

The increasing trend of industrialization leads to tremendous release of industrial effluents. Waste water treatment is one of the important sectors to focus in order to overcome the most threatening issue of waste disposal and to ensure sustainability. Sustainable and energy efficient treatment methods are the attractive technologies for their current implementation of waste management.

View Article and Find Full Text PDF

Microplastic (MP), as a pollutant, is currently posing a biological hazard to the aquatic environment. The study aims to isolate, quantify, and characterize the MP pollutants in sediment samples from 14 study sites at Kaveri River, Killa Chinthamani, Tiruchirappalli, South India. With Sediment-MP Isolation (SMI) unit, density separation was done with a hydrogen peroxide solution.

View Article and Find Full Text PDF

One of the modern challenges is to provide clean and affordable drinking water. Water scarcity is caused by the growing population in the world and pollutants contaminate all remaining water sources. Innovative water treatment solutions have been provided by nanotechnology.

View Article and Find Full Text PDF

Hazardous coir industrial waste, coir pith has been subjected to 50 days vermicomposting with Eudrilus eugeniae by amending nitrogenous legume plant, Gliricidia sepium together with cattle dung in different combinations, after 21 days precomposting using Pleurotus sajor-caju spawn. An increase in electrical conductivity, total NPK and calcium, and a decrease in organic matter, total organic carbon, C/N ratio, C/P ratio and total phenolic content in the final vermicompost were observed. Dehydrogenase, urease and cellulase activity peaked up to 30 days of vermicomposting and then declined.

View Article and Find Full Text PDF

Regenerative medicine, a therapeutic approach using stem cells, aims to rejuvenate and restore the normalized function of the cells, tissues, and organs that are injured, malfunctioning, and afflicted. This influential technology reaches its zenith when it is integrated with the CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR associated) technology of genome editing. This tool acts as a programmable restriction enzyme system, which targets DNA as well as RNA and gets redeployed for the customization of DNA/RNA sequences.

View Article and Find Full Text PDF

The rising global population and their food habits result in food wastage and cause an obstacle in its treatment and disposal. Due to the rapid shift in the lifestyle of the human population and urbanization, almost one-third of the food produced is wasted from various sectors like domestic sources, agricultural sectors, and industrial sectors. These food resources squandered are rich in organic biomolecules which can cause complications upon direct disposal in the environment.

View Article and Find Full Text PDF

Surface and water bodies in many parts of the world are affected due to eutrophication, contamination and depletion. The approach of wastewater treatment using algae for eliminating nutrients and other pollutants from domestic wastewater is growing interest among the researchers. However, sustainable treatment of the wastewater is considered to be important in establishing more effective nutrient and pollutant reduction using algal systems.

View Article and Find Full Text PDF

Coronavirus disease (COVID-19) has emerged as a fast-paced epidemic in late 2019 which is disrupting life-saving immunization services. SARS-CoV-2 is a highly transmissible virus and an infectious disease that has caused fear among people across the world. The worldwide emergence and rapid expansion of SARS-CoV-2 emphasizes the need for exploring innovative therapeutic approaches to combat SARS-CoV-2.

View Article and Find Full Text PDF

While the technologies available today can generate high-quality water from wastewater, the majority of the wastewater treatment plants are not intended to eliminate emerging xenobiotic pollutants, pharmaceutical and personal care items. Most endocrine disrupting compounds (EDCs) and personal care products (PPCPs) are more arctic than most regulated pollutants, and several of them have acid or critical functional groups. Together with the trace occurrence, EDCs and PPCPs create specific challenges for removal and subsequent improvements of wastewater treatment plants.

View Article and Find Full Text PDF

The invasive weed, Ipomoea staphylina (IS) with cow dung (CD) and mushroom spent straw (MS) in four different combinations (IS:CD:MS), V1 (1:1:0), V2 (2:1:1), V3 (1:0:1) and V4 (1:1:1) were pre-decomposed for 21 days followed by 50 days vermicomposting using Eudrilus eugeniae in triplicates in order to alleviate and to utilize the weed biomass in an environment-friendly manner. The contents of organic matter, organic carbon, cellulose, lignin, C/N and C/P ratios showed a decrease, while electrical conductivity, total NPK, calcium, sodium, and nitrate-nitrogen showed a significant increase in vermicompost over control. Water-soluble organic carbon to organic nitrogen ratio and C/N ratio in V1 (0.

View Article and Find Full Text PDF

Water supply around the globe is struggling to meet the rapidly increasing demand by the population, drastic changes in climate and degrading water quality. Even though, many large-scale methods are employed for wastewater treatment they display several negative impacts owing to the presence of pollutants. Technological innovation is required for integrated water management with different groups of nanomaterials for the removal of toxic metal ions, microbial disease, organic and inorganic solutes.

View Article and Find Full Text PDF

Microbial production of xylanase is gaining the commercial importance, due to its wide range of applications from paper and pulp to food and feed industries. Streptomyces geysiriensis was used for the production of extracellular xylanase from lignocellulosic substrates such as rice bran and saw dust, under solid-state fermentation. The influence of pH, temperature and incubation period for the maximum production of xylanase was investigated with 1:2 (w/v) of substrate to moisture ratio at 100 rpm shaking conditions.

View Article and Find Full Text PDF

Vermicomposting of pressmud with cow dung and nitrogenous green manures (Gliricidia sepium and Leucaena leucocephala) was carried out using Eudrilus eugeniae (50 days). The reduction in pH, total organic carbon, C/N ratio, water-soluble organic carbon (C)/N and C/P ratios, and a pronounced increase in NPK contents and microbial population in vermicompost were observed. An enhanced TKN of 3.

View Article and Find Full Text PDF

Silver nanoparticles (AgNPs) have been undeniable for its antimicrobial activity while its antitumour potential is still limited. Therefore, the present study focused on determining cytotoxic effects of AgNPs on Michigan cancer foundation-7 (MCF-7) breast cancer cells and its corresponding mechanism of cell death. Herein, the authors developed a bio-reduction method for AgNPs synthesis using actinomycetes isolated from marine soil sample.

View Article and Find Full Text PDF