Publications by authors named "Raghu Dinesh"

The presence of precursor to exhausted (T) CD8 T cells is important to maintain robust immunity following treatment with immune checkpoint inhibition (ICI). Impressive responses to ICI are emerging in patients with stage II-III mismatch repair (MMR)-deficient (dMMR) colorectal cancer (CRC). We found 64% of dMMR and 15% of mismatch repair-proficient (pMMR) stage III CRCs had a high frequency of tumor infiltrating lymphocytes (TIL-hi).

View Article and Find Full Text PDF

Intraepithelial lymphocytes (IELs), including αβ and γδ T cells (T-IELs), constantly survey and play a critical role in maintaining the gastrointestinal epithelium. We show that cytotoxic molecules important for defense against cancer were highly expressed by T-IELs in the small intestine. In contrast, abundance of colonic T-IELs was dependent on the microbiome and displayed higher expression of TCF-1/ and a reduced effector and cytotoxic profile, including low expression of granzymes.

View Article and Find Full Text PDF

Summary: The 10x Genomics Chromium single-cell RNA sequencing technology is a powerful gene expression profiling platform, which is capable of profiling expression of thousands of genes in tens of thousands of cells simultaneously. This platform can produce hundreds of million reads in a single experiment, making it a very challenging task to quantify expression of genes in individual cells due to the massive data volume. Here, we present cellCounts, a new tool for efficient and accurate quantification of Chromium data.

View Article and Find Full Text PDF

The gut epithelium not only provides a physical barrier to separate a noxious outside from a sterile inside but also allows for highly regulated interactions between bacteria and their products, and components of the immune system. Homeostatic maintenance of an intact epithelial barrier is paramount to health, requiring an intricately regulated and highly adaptive response of various cells of the immune system. Prolonged homeostatic imbalance can result in chronic inflammation, tumorigenesis and inefficient antitumor immune control.

View Article and Find Full Text PDF
Article Synopsis
  • - Metastatic prostate cancer is difficult to treat due to malfunctioning of the p53 protein, which normally helps control cancer growth, and mutations in p53 can prevent successful treatment efforts.
  • - Research focused on alternative cancer drivers led to the discovery that MDM4 plays a significant role in prostate cancer cells, showing that reducing MDM4 can inhibit cancer cell growth by triggering cell death or senescence.
  • - Targeting MDM4's effects can be enhanced in prostate cancers with mutated p53 by using a new small molecule drug that reactivates p53 and increases oxidative stress, promoting cancer cell death.
View Article and Find Full Text PDF

T cell factor-1 (TCF-1), encoded by Tcf7, is a transcription factor and histone deacetylase (HDAC) essential for commitment to both the T cell and the innate lymphoid cell (ILC) lineages in mammals. In this review, we discuss the multifunctional role of TCF-1 in establishing these lineages and the requirement for TCF-1 throughout lineage differentiation and maintenance of lineage stability. We highlight recent reports showing promise for TCF-1 as a novel biomarker to identify recently characterized subsets of exhausted CD8 T cells that may help to predict patient responses to immune checkpoint blockade (ICB).

View Article and Find Full Text PDF

Interleukin (IL)-17-producing CD8 T (Tc17) cells have emerged as key players in host-microbiota interactions, infection, and cancer. The factors that drive their development, in contrast to interferon (IFN)-γ-producing effector CD8 T cells, are not clear. Here we demonstrate that the transcription factor TCF-1 () regulates CD8 T cell fate decisions in double-positive (DP) thymocytes through the sequential suppression of MAF and RORγt, in parallel with TCF-1-driven modulation of chromatin state.

View Article and Find Full Text PDF

Prostate cancer is a common cause of cancer-related death in men. E6AP (E6-Associated Protein), an E3 ubiquitin ligase and a transcription cofactor, is elevated in a subset of prostate cancer patients. Genetic manipulations of E6AP in prostate cancer cells expose a role of E6AP in promoting growth and survival of prostate cancer cells and However, the effect of E6AP on prostate cancer cells is broad and it cannot be explained fully by previously identified tumor suppressor targets of E6AP, promyelocytic leukemia protein and p27.

View Article and Find Full Text PDF

Prostate cancer (PC) is the most common cancer in men. Elevated levels of E3 ligase, E6-Associated Protein (E6AP) were previously linked to PC, consistent with increased protein expression in a subset of PC patients. In cancers, irregular E3 ligase activity drives proteasomal degradation of tumor suppressor proteins.

View Article and Find Full Text PDF

Mutation of the key tumour suppressor p53 defines a transition in the progression towards aggressive and metastatic breast cancer (BC) with the poorest outcome. Specifically, the p53 mutation frequency exceeds 50% in triple-negative BC. Key regulators of mutant p53 that facilitate its oncogenic functions are potential therapeutic targets.

View Article and Find Full Text PDF

The tumor suppressor p53 normally acts as a brake to halt damaged cells from perpetrating their genetic errors into future generations. If p53 is disrupted by mutation, it may not only lose these corrective powers, but counterproductively acquire new capacities that drive cancer. A newly emerging manner in which mutant p53 executes its cancer promoting functions is by harnessing key proteins, which normally partner with its wild type, tumor-inhibiting counterpart.

View Article and Find Full Text PDF

A series of novel naphthoquinone amide derivatives of the bioactive quinones, plumbagin, juglone, menadione and lawsone, with various amino acids were synthesized. The compounds were characterized by (1)H NMR, (13)C NMR, Mass, IR and elemental analysis. All the compounds were evaluated for their anticancer activity against HeLa and SAS cancer cell lines and 3D-QSAR indicated the presence of electron donating group near sulphur enhanced the activity against HeLa cells.

View Article and Find Full Text PDF

Plumbagin (1), a naphthoquinone, induces cell death and affects various signaling pathways in cancer cells. Wnt signaling is active constitutively in colorectal cancer and plays an important role in its progression and pathogenesis. It was hypothesized that 1 is likely to modulate Wnt signaling, and this compound was studied for its effect on this pathway in human colorectal cancer cells.

View Article and Find Full Text PDF

Oral cancer is one of the most commonly occurring cancers worldwide, decreasing the patient's survival rate due to tumor recurrence and metastasis. Menadione (Vitamin K3) is known to exhibit cytotoxicity in various cancer cells but the present study focused on its effects on viability, apoptosis, epithelial to mesenchymal transition (EMT), anchorage independent growth and migration of oral cancer cells. The results show that menadione is more cytotoxic to SAS (oral squamous carcinoma) cells but not to non-tumorigenic HEK293 and HaCaT cells.

View Article and Find Full Text PDF

Vivax malaria is the most widely distributed human malaria resulting in 80-300 million clinical cases every year. It causes severe infection and mortality but is generally regarded as a benign disease and has not been investigated in detail. The present study aimed to perform human serum proteome analysis in a malaria endemic area in India to identify potential serum biomarkers for vivax malaria and understand host response.

View Article and Find Full Text PDF

Availability of genome sequence of human and different pathogens has advanced proteomics research for various clinical applications. One of the prime goals of proteomics is identification and characterization of biomarkers for cancer and other fatal human diseases to aid an early diagnosis and monitor disease progression. However, rapid detection of low abundance biomarkers from the complex biological samples under clinically relevant conditions is extremely difficult, and it requires the development of ultrasensitive, robust and high-throughput technological platform.

View Article and Find Full Text PDF