We present a novel computational framework that combines Agent-Based Modeling (ABM) with Reinforcement Learning (RL) using the Double Deep Q-Network (DDQN) algorithm to determine cellular behavior in response to environmental signals. With this approach, the model captures the transduction of environmental cues into biological responses directly from experimental observations, without explicitly predefining cell behavior. This enables the prediction of dynamic, environment-dependent cell behavior and offers a scalable and flexible alternative to traditional rule-based ABM.
View Article and Find Full Text PDF