Mechanical and contractile forces in the vascular wall regulate smooth muscle cell migration. We previously demonstrated the presence of C3 complement products in atherosclerotic lesions of human aortas and showed that that C3-derived fragments promote key cellular processes, such as actin cytoskeleton organization and cell migration, in lipid-loaded human vascular smooth muscle cells (hVSMCs). In the present study, we aimed to investigate gene expression profiles related to cytoskeletal remodeling and cell adhesion in migrating hVSMCs with a particular focus on modulatory effect of the C3 complement pathway on these processes.
View Article and Find Full Text PDFEur J Clin Invest
August 2024
Int J Mol Sci
December 2022
Heart failure (HF) is a complex disease entity with high clinical impact, poorly understood pathophysiology and scantly known miRNA-mediated epigenetic regulation. We have analysed miRNA patterns in patients with chronic HF (cHF) and a sex- and age-matched reference group and pursued an in silico system biology analysis to discern pathways involved in cHF pathophysiology. Twenty-eight miRNAs were identified in cHF that were up-regulated in the reference group, and eight of them were validated by RT-qPCR.
View Article and Find Full Text PDFBiology (Basel)
November 2021
Inflammasomes are key components of the innate immunity system that trigger the inflammatory response. Inappropriate activity of the inflammasome system has been linked to onset and perpetuation of inflammation in atherosclerotic plaques and cardiovascular disease. Low-to-moderate beer consumption is inversely associated with cardiovascular event presentation, while high levels of alcohol intake are associated with increased cardiovascular risk.
View Article and Find Full Text PDFFamilial hypercholesterolemia (FH) is increasingly associated with inflammation, a phenotype that persists despite treatment with lipid lowering therapies. The alternative C3 complement system (C3), as a key inflammatory mediator, seems to be involved in the atherosclerotic process; however, the relationship between C3 and lipids during plaque progression remains unknown. The aim of the study was to investigate by a systems biology approach the role of C3 in relation to lipoprotein levels during atherosclerosis (AT) progression and to gain a better understanding on the effects of C3 products on the phenotype and function of human lipid-loaded vascular smooth muscle cells (VSMCs).
View Article and Find Full Text PDFCirculating microvesicles (cMV) are small (0.1-1 μm) phospholipid-rich blebs released by almost all cell types, and their release increases with cell activation and injury, thus reflecting the state of the cell from which they are originated. Microvesicles (MV) are found in the bloodstream, and they affect the phenotype of recipient cells, after local or systemic circulation, by intercellular transfer of their molecular content.
View Article and Find Full Text PDFAims: High-density lipoproteins (HDLs) are circulating micelles that transport proteins, lipids, and miRNAs. HDL-transported miRNAs (HDL-miRNAs) have lately received attention but their effects on vascular cells are not fully understood. Additionally, whether cardiovascular risk factors affect HDL-miRNAs levels and miRNA transfer to recipient cells remains equally poorly known.
View Article and Find Full Text PDFFamilial hypercholesterolemia (FH) conveys a high risk of premature atherosclerosis as a result of lifelong exposure to high LDL cholesterol levels that are not fully reduced by standard-of-care lipid-lowering treatment. Inflammatory mediators have played a role in the progression of atherosclerotic lesions. Here, we investigated whether innate immunity cells in patients with FH have a specific proinflammatory phenotype that is distinct from that of cells in normal participants.
View Article and Find Full Text PDFFamilial hypercholesterolemia (FH) conveys a high risk of premature atherosclerosis as a result of lifelong exposure to high LDL cholesterol levels that are not fully reduced by standard-of-care lipid-lowering treatment. Inflammatory mediators have played a role in the progression of atherosclerotic lesions. Here, we investigated whether innate immunity cells in patients with FH have a specific proinflammatory phenotype that is distinct from that of cells in normal participants.
View Article and Find Full Text PDFBackground: Beneficial effects of high-density lipoproteins (HDL) seem altered in patients with symptomatic cardiovascular disease. We recently demonstrated in a swine model of ischemia-reperfusion (IR) that hypercholesterolemia abolishes HDL-related cardioprotection.
Objectives: This study sought to investigate, using the same animal model, whether the reported impairment of HDL cardioprotective function was associated with alterations in HDL remodeling and functionality.
Familial hypercholesterolaemia (FH) is a major risk for premature coronary heart disease due to severe long-life exposure to high LDL levels. Accumulation of LDL in the vascular wall triggers atherosclerosis with activation of the innate immunity system. Here, we have investigated (i) gene expression of LDLR and LRPs in peripheral blood cells (PBLs) and in differentiated macrophages of young FH-patients; and (ii) whether macrophage from FH patients have a differential response when exposed to high levels of atherogenic LDL.
View Article and Find Full Text PDF