Drought conditions severely curtail the ability of plants to accumulate biomass due to the closure of stomata and the decrease of photosynthetic assimilation rate. Additionally, there is a shift in the plant's metabolic processes toward the production of metabolites that offer protection and aid in osmoadaptation, as opposed to those required for development and growth. To limit water loss via non-stomatal transpiration, plants adjust the load and composition of cuticle waxes, which act as an additional barrier.
View Article and Find Full Text PDFField-grown crops rarely experience growth conditions in which yield can be maximized. Environmental stresses occur in combination, with advancements in crop tolerance further complicated by its polygenic nature. Strategic targeting of causal genes is required to meet future crop production needs.
View Article and Find Full Text PDFMesophyll conductance (gm) determines the diffusion of CO2 from the substomatal cavities to the site of carboxylation in the chloroplasts and represents a critical component of the diffusive limitation of photosynthesis. In this study, we evaluated the average effect sizes of different environmental constraints on gm in Populus spp., a forest tree model.
View Article and Find Full Text PDFCompetition for scarce water resources and the continued effects of global warming exacerbate current constraints on potato crop production. While plants' response to drought in above-ground tissues has been well documented, the regulatory cascades and subsequent nutritive changes in developing tubers have been largely unexplored. Using the commercial Canadian cultivar "Vigor", plants were subjected to a gradual drought treatment under high tunnels causing a 4 °C increase in the canopy temperature.
View Article and Find Full Text PDFThe mechanistic bases of thermal acclimation of net photosynthetic rate (An) are still difficult to discern, and the data sets available are scarce, particularly for hybrid poplar. In the present study, we examined the contribution of a number of biochemical and biophysical traits on thermal acclimation of An for two hybrid poplar clones. We grew cuttings of Populus maximowiczii × Populus nigra (M×N) and Populus maximowiczii × Populus balsamifera (M×B) clones under two day/night temperature of 23°C/18°C and 33°C /27°C and under low and high soil nitrogen level.
View Article and Find Full Text PDFPhotosynthetic assimilation is remarkably altered by heat and drought, and this depends on the individual or combined occurrence of stressors and their respective intensities and durations. Abiotic stressors may also alter the nutritional quality and economic value of crops. In this controlled greenhouse study, we evaluated the response of L.
View Article and Find Full Text PDF