Plasmonic core-shell nanostructures can make photocatalysis more efficient for several reasons. The shell imparts stability to the nanoparticles, light absorption is expanded, and electron-hole pairs can be separated more effectively, thus reducing recombination losses. The synthesis of metal@TiO core-shell nanoparticles with nanometer control over the shell thickness and understanding its effect on the resulting photocatalytic efficiency still remains challenging.
View Article and Find Full Text PDFThis study introduces solid-state tuning of a mesostructured cellular foam (MCF) to enhance hydrogen (H) storage in clathrate hydrates. Grafting of promoter-like molecules (, tetrahydrofuran) at the internal surface of the MCF resulted in a substantial improvement in the kinetics of formation of binary H-THF clathrate hydrate. Identification of the confined hydrate as sII clathrate hydrate and enclathration of H in its small cages was performed using XRD and high-pressure H NMR spectroscopy respectively.
View Article and Find Full Text PDFDirect photocatalytic reduction of CO has become an highly active field of research. It is thus of utmost importance to maintain an overview of the various materials used to sustain this process, find common trends, and, in this way, eventually improve the current conversions and selectivities. In particular, CO photoreduction using plasmonic photocatalysts under solar light has gained tremendous attention, and a wide variety of materials has been developed to reduce CO towards more practical gases or liquid fuels (CH , CO, CH OH/CH CH OH) in this manner.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2017
Silver nanoparticles are widely used in the field of plasmonics because of their unique optical properties. The wavelength-dependent surface plasmon resonance gives rise to a strongly enhanced electromagnetic field, especially at so-called hot spots located in the nanogap in-between metal nanoparticle assemblies. Therefore, the interparticle distance is a decisive factor in plasmonic applications, such as surface-enhanced Raman spectroscopy (SERS).
View Article and Find Full Text PDF