Publications by authors named "Rachel Oldershaw"

Background: Current systematic reviews with meta-analyses have identified the lever sign test as the best clinical examination for ruling out an anterior cruciate ligament (ACL) tear, but the included studies have methodological limitations that could bias the test outcome, potentially overestimating its clinical utility.

Purpose: To investigate the interrater reliability and concurrent validity of the lever sign test after a traumatic knee injury and to investigate the association between test variables (surface used, fist position, effusion grade, force applied, pain reported) and test outcomes.

Study Design: Cohort study (Diagnosis); Level of evidence, 2.

View Article and Find Full Text PDF

Purpose: To evaluate the intrarater reliability and predictive validity of Lachmeter® measurements for diagnosing acute anterior cruciate ligament (ACL) tears, and to propose diagnostic thresholds.

Methods: Lachmeter® measurements were recorded during the stabilised Lachman test for consecutive participants presenting to an acute knee injury clinic within 21-days of injury. Intrarater reliability for individual limb and side-to-side (STS) difference (injured limb minus uninjured limb) measurements was investigated using a cross-sectional, repeated-measures design and the intraclass correlation coefficient (ICC).

View Article and Find Full Text PDF

Background: Cell therapy can protect cardiomyocytes from hypoxia, primarily via paracrine secretions, including extracellular vesicles (EVs). Since EVs fulfil specific biological functions based on their cellular origin, we hypothesised that EVs from human cardiac stromal cells (CMSCLCs) obtained from coronary artery bypass surgery may have cardioprotective properties.

Objectives: This study characterises CMSCLC EVs (C_EVs), miRNA cargo, cardioprotective efficacy and transcriptomic modulation of hypoxic human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs).

View Article and Find Full Text PDF

This study investigates the characteristics of cardiac mesenchymal stem cell-like cells (CMSCLCs) isolated from the right atrial appendage of human donors with ischemia and a young patient with endocarditis (NE-CMSCLCs). Typical CMSCLCs from ischemic heart patients were derived from coronary artery bypass grafting procedures and compared against bone marrow mesenchymal stromal cells (BM-MSCs). NE-CMSCLCs had a normal immunophenotype, but exhibited enhanced osteogenic differentiation potential, rapid proliferation, reduced senescence, reduced glycolysis, and lower reactive oxygen species generation after oxidative stress compared with typical ischemic CMSCLCs.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines the effectiveness of inline dynamometry for measuring quadriceps strength after ACL reconstruction, aiming to confirm its reliability and validity.
  • The research involved 50 healthy participants and 52 ACL-reconstructed individuals, measuring isometric quadriceps strength at a specific knee angle and utilizing various statistical methods to assess reliability.
  • Findings indicate that inline dynamometry is a reliable and cost-effective alternative to traditional methods, making it a suitable option for post-rehabilitation assessments.
View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) modulate immune responses and maintain self-tolerance. Their trophic activities and regenerative properties make them potential immunosuppressants for treating autoimmune and autoinflammatory diseases. MSCs are drawn to sites of injury and inflammation where they can both reduce inflammation and contribute to tissue regeneration.

View Article and Find Full Text PDF

Autologous chondrocyte implantation (ACI) is a cell therapy to repair cartilage defects. In ACI a biopsy is taken from a non-load bearing area of the knee and expanded in-vitro. The expansion process provides the benefit of generating a large number of cells required for implantation; however, during the expansion these cells de-differentiate and lose their chondrocyte phenotype.

View Article and Find Full Text PDF

There is significant interest in the role of stem cells in cardiac regeneration, and yet little is known about how cardiac disease progression affects native cardiac stem cells in the human heart. In this brief report, cardiac mesenchymal stem cell-like cells (CMSCLC) from the right atria of a 21-year-old female patient with a bicuspid aortic valve and aortic stenosis (referred to as biscuspid aortic valve disease BAVD-CMSCLC), were compared with those of a 78-year-old female patient undergoing coronary artery bypass surgery (referred to as coronary artery disease CAD-CMSCLC). Cells were analyzed for expression of MSC markers, ability to form CFU-Fs, metabolic activity, cell cycle kinetics, expression of NANOG and p16, and telomere length.

View Article and Find Full Text PDF

The integration of cell metabolism with signalling pathways, transcription factor networks and epigenetic mediators is critical in coordinating molecular and cellular events during embryogenesis. Induced pluripotent stem cells (IPSCs) are an established model for embryogenesis, germ layer specification and cell lineage differentiation, advancing the study of human embryonic development and the translation of innovations in drug discovery, disease modelling and cell-based therapies. The metabolic regulation of IPSC pluripotency is mediated by balancing glycolysis and oxidative phosphorylation, but there is a paucity of data regarding the influence of individual metabolite changes during cell lineage differentiation.

View Article and Find Full Text PDF

Purpose: The diagnostic accuracy of clinical tests for anterior cruciate ligament injury has been reported in previous systematic reviews. Numerous studies in these reviews include subjects with additional knee ligament injury, which could affect the sensitivity of the tests. Meta-analyses have also been performed using methods that do not account for the non-independence of sensitivity and specificity, potentially overestimating diagnostic accuracy.

View Article and Find Full Text PDF

Glaucoma is one of the leading causes of vision loss worldwide, characterised with irreversible optic nerve damage and progressive vision loss. Primary open-angle glaucoma (POAG) is a subset of glaucoma, characterised by normal anterior chamber angle and raised intraocular pressure (IOP). Reducing IOP is the main modifiable factor in the treatment of POAG, and the trabecular meshwork (TM) is the primary site of aqueous humour outflow (AH) and the resistance to outflow.

View Article and Find Full Text PDF

Juvenile idiopathic arthritis (JIA) is the most common paediatric rheumatological disorder and is classified by subtype according to International League of Associations for Rheumatology criteria. Depending on the number of joints affected, presence of extra-articular manifestations, systemic symptoms, serology and genetic factors, JIA is divided into oligoarticular, polyarticular, systemic, psoriatic, enthesitis-related and undifferentiated arthritis. This review provides an overview of advances in understanding of JIA pathogenesis focusing on aetiology, histopathology, immunological changes associated with disease activity, and best treatment options.

View Article and Find Full Text PDF

Cardiac stem/progenitors are being used in the clinic to treat patients with a range of cardiac pathologies. However, improvements in heart function following treatment have been reported to be variable, with some showing no response. This discrepancy in response remains unresolved.

View Article and Find Full Text PDF

Background: The highly plastic nature of adrenal cortex suggests the presence of adrenocortical stem cells (ACSC), but the exact identity of ACSC remains elusive. A few studies have demonstrated the differentiation of adipose or bone marrow-derived mesenchymal stem cells (MSC) into steroid-producing cells. We therefore investigated the isolation of multipotent MSC from human adrenal cortex.

View Article and Find Full Text PDF

Aim: To isolate and characterize limbal mesenchymal stem cells (LMSCs) from human corneoscleral rings.

Materials & Methods: Cells were isolated from corneoscleral rings and cultured in a mesenchymal stem cell (MSC)-selective media and examined for differentiation, phenotyping and characterization.

Results: LMSCs were capable of trilineage differentiation, adhered to tissue culture plastic, expressed HLA class I and cell surface antigens associated with human MSC while having no/low expression of HLA class II and negative hematopoietic lineage markers.

View Article and Find Full Text PDF

Background: We have investigated the behaviour of a newly characterised population of haemarthrosis fluid-derived human mesenchymal stem cells (HF-hMSCs) with titanium (Ti) surfaces.

Methods: HF-hMSCs were seeded onto round cannulated interference (RCI; Smith and Nephew) screws or control Ti discs and cultured under pro-osteogenic conditions.

Results: Electron microscopy showed the attachment and spreading of HF-hMSCs across both Ti surfaces during the early stages of osteogenic culture; however, cells were exclusively localised to the basal regions within the vertex of the Ti screws.

View Article and Find Full Text PDF

Tissue engineering strategies can be applied to enhancing osseous integration of soft tissue grafts during ligament reconstruction. Ligament rupture results in a hemarthrosis, an acute intra-articular bleed rich in osteogenic human mesenchymal stem cells (hMSCs). With the aim of identifying an appropriate biomaterial with which to combine hemarthrosis fluid-derived hMSCs (HF-hMSCs) for therapeutic application, this work has investigated the biocompatibility of microparticles manufactured from two forms of poly(D,L-lactic-co-glycolic acid) (PLGA), one synthesized with equal monomeric ratios of lactic acid to glycolic acid (PLGA 50:50) and the other with a higher proportion of lactic acid (PLGA 85:15) which confers a longer biodegradation time.

View Article and Find Full Text PDF

Satisfactory osseous tissue integration of the soft tissue graft with bone is the mainstay of healing following surgical reconstruction of the anterior cruciate ligament (ACL). However, tissue remodelling is slow and significantly impacts on quality of life by delaying return to work and sport and accelerating the onset of degenerative diseases such as osteoarthritis. Delivery of multipotent human mesenchymal stem cells (hMSCs) at surgery could enhance osseous tissue integration.

View Article and Find Full Text PDF

Avascular, aneural articular cartilage has a low capacity for self-repair and as a consequence is highly susceptible to degradative diseases such as osteoarthritis. Thus the development of cell-based therapies that repair focal defects in otherwise healthy articular cartilage is an important research target, aiming both to delay the onset of degradative diseases and to decrease the need for joint replacement surgery. This review will discuss the cell sources which are currently being investigated for the generation of chondrogenic cells.

View Article and Find Full Text PDF

Introduction: The development of reproducible methods for deriving human embryonic stem cell (hESC) lines in compliance with good manufacturing practice (GMP) is essential for the development of hESC-based therapies. Although significant progress has been made toward the development of chemically defined conditions for the maintenance and differentiation of hESCs, efficient derivation of new hESCs requires the use of fibroblast feeder cells. However, GMP-grade feeder cell lines validated for hESC derivation are not readily available.

View Article and Find Full Text PDF

We report a chemically defined, efficient, scalable and reproducible protocol for differentiation of human embryonic stem cells (hESCs) toward chondrocytes. HESCs are directed through intermediate developmental stages using substrates of known matrix proteins and chemically defined media supplemented with exogenous growth factors. Gene expression analysis suggests that the hESCs progress through primitive streak or mesendoderm to mesoderm, before differentiating into a chondrocytic culture comprising cell aggregates.

View Article and Find Full Text PDF

We report here the derivation of two new human embryonic stem cell lines, Man-1 and Man-2, and their full characterization as novel pluripotent stem cell lines. Man-1 was derived from an embryo surplus to requirement from routine IVF, while Man-2 was obtained from an oocyte classified as failed to fertilise and subsequently chemically activated. We report the characterisation of pluripotency and the differentiation potential of these lines.

View Article and Find Full Text PDF

Notch signaling is an important mechanism involved in early development which helps to determine the differentiation and fate of cells destined to form different tissues in the body. Its role in the differentiation of adult stem cells, such as those found in bone marrow is much less clear. As there is great interest in the potential of human bone marrow stem cells (hMSC) as a source of cells for the repair of articular cartilage and other tissues, it is important to understand if Notch signaling promotes or suppresses differentiation.

View Article and Find Full Text PDF

We investigated Notch signaling during chondrogenesis in human bone marrow stromal cells (hMSC) in three-dimensional cell aggregate culture. Expression analysis of Notch pathway genes in 14-day chondrogenic cultures showed that the Notch ligand Jagged-1 (Jag-1) sharply increased in expression, peaking at day 2, and then declined. A Notch target gene, HEY-1, was also expressed, with a temporal profile that closely followed the expression of Jag-1, and this preceded the rise in type II collagen expression that characterized chondrogenesis.

View Article and Find Full Text PDF