Chem Commun (Camb)
March 2024
An imidazolyl hydrogen-bonded organic framework (HOF-T) with outstanding thermal and water stability was constructed by C-H⋯N hydrogen bonding and C-H⋯π interactions. UO can be selectively captured by the imidazole group of HOF-T and rapidly reduced to UO under visible light irradiation, realizing exceptional uranium removal with high capacity and fast kinetics.
View Article and Find Full Text PDFUntreated radioactive iodine (I and I) released from nuclear power plants poses a significant threat to humans and the environment, so the development of materials to capture iodine from water media and steam is critical. Here, we report a charge transfer complex (TCNQ-MA CTC) with abundant nitrogen atoms and π-conjugated system for adsorption of I vapor and I from aqueous solutions. Due to the synergistic binding mechanism of benzene/triazine rings and N-containing groups with iodine, special I-π and charge transfer interaction can be formed between the guest and the host, and thus efficient removal of I and I can be realized by TCNQ-MA CTC with the adsorption capacity up to 2.
View Article and Find Full Text PDFNanomaterials with enzyme mimetic activity have attracted extensive attention, especially in the regulation of their catalytic activities by biomolecules or other polymers. Here, a covalent organic framework (Tph-BT COF) with excellent photocatalytic activity is constructed by Schiff base reaction, and its mimetic oxidase activity and peroxidase activity is inversely regulated via single-stranded DNA (ssDNA). Under light-emitting diode (LED) light irradiation, Tph-BT exhibited outstanding oxidase activity, which efficiently catalyzed oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to produce blue oxTMB, and ssDNA, especially those with poly-thymidine (T) sequences, can significantly inhibit its oxidase activity.
View Article and Find Full Text PDFNanozymes are nanomaterials with enzyme-mimetic activity. It is known that DNA can interact with various nanozymes in different ways, enhancing or inhibiting the activity of nanozymes, which can be used to develop various biosensors. In this work, we synthesized a photosensitive covalent-organic framework (Tph-BT) as a nanozyme, and its oxidase and peroxidase activities could be reversely regulated by surface modification of single-stranded DNA (ssDNA) for the colorimetric detection of UO.
View Article and Find Full Text PDFBacterial infection causes serious threats to human life, especially with the appearance of antibiotic-resistant bacteria. Phototherapeutic approaches have become promising due to their noninvasiveness, few adverse effects, and high efficiency. Herein, a covalent organic framework (TAPP-BDP) with a conjugated donor-acceptor (D-A) structure has been constructed for efficient photoinduced bacteriostasis.
View Article and Find Full Text PDF2D covalent organic frameworks (2D COFs) have been recognized as a novel class of photoactive materials owing to their extended π-electron conjugation and high chemical stabilities. Herein, a new covalent organic framework (Tph-BDP) is facilely synthesized by using a porphyrin derivative and an organic dye BODIPY derivative (5,5-difluoro-2,8-diformyl-1,3,7,9-tetramethyl-10-phenyl-5H-dipyrrolo[1,2-c:2',1'-f][1,3,2]diazabori-nin-4-ium-5-uide) as monomers for the first time, and their unique photosensitive properties endow them excellent simulated oxidase activity under 635 nm laser irradiation that can catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB). Further findings demonstrate that the presence of uranium (UO ) can coordinate with imines of the oxidation products of TMB, thus modulating the charge transfer process of the colored products accompanied with intensive aggregation and remarkable color fading.
View Article and Find Full Text PDF