Subclonal reconstruction algorithms use bulk DNA sequencing data to quantify parameters of tumor evolution, allowing an assessment of how cancers initiate, progress and respond to selective pressures. We launched the ICGC-TCGA (International Cancer Genome Consortium-The Cancer Genome Atlas) DREAM Somatic Mutation Calling Tumor Heterogeneity and Evolution Challenge to benchmark existing subclonal reconstruction algorithms. This 7-year community effort used cloud computing to benchmark 31 subclonal reconstruction algorithms on 51 simulated tumors.
View Article and Find Full Text PDFStem cells regulate their self-renewal and differentiation fate outcomes through both symmetric and asymmetric divisions. mA RNA methylation controls symmetric commitment and inflammation of hematopoietic stem cells (HSCs) through unknown mechanisms. Here, we demonstrate that the nuclear speckle protein SON is an essential mA target required for murine HSC self-renewal, symmetric commitment, and inflammation control.
View Article and Find Full Text PDFSubclonal reconstruction from bulk tumor DNA sequencing has become a pillar of cancer evolution studies, providing insight into the clonality and relative ordering of mutations and mutational processes. We provide an outline of the complex computational approaches used for subclonal reconstruction from single and multiple tumor samples. We identify the underlying assumptions and uncertainties in each step and suggest best practices for analysis and quality assessment.
View Article and Find Full Text PDFWhole-genome sequencing can be used to estimate subclonal populations in tumours and this intra-tumoural heterogeneity is linked to clinical outcomes. Many algorithms have been developed for subclonal reconstruction, but their variabilities and consistencies are largely unknown. We evaluate sixteen pipelines for reconstructing the evolutionary histories of 293 localized prostate cancers from single samples, and eighteen pipelines for the reconstruction of 10 tumours with multi-region sampling.
View Article and Find Full Text PDFBackground: RNA-binding proteins (RBPs) function as master regulators of gene expression. Alterations in RBP expression and function are often observed in cancer and influence critical pathways implicated in tumor initiation and growth. Identification and characterization of oncogenic RBPs and their regulatory networks provide new opportunities for targeted therapy.
View Article and Find Full Text PDFNature
February 2020
Cancer develops through a process of somatic evolution. Sequencing data from a single biopsy represent a snapshot of this process that can reveal the timing of specific genomic aberrations and the changing influence of mutational processes. Here, by whole-genome sequencing analysis of 2,658 cancers as part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), we reconstruct the life history and evolution of mutational processes and driver mutation sequences of 38 types of cancer.
View Article and Find Full Text PDFIn cancer, the primary tumour's organ of origin and histopathology are the strongest determinants of its clinical behaviour, but in 3% of cases a patient presents with a metastatic tumour and no obvious primary. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, we train a deep learning classifier to predict cancer type based on patterns of somatic passenger mutations detected in whole genome sequencing (WGS) of 2606 tumours representing 24 common cancer types produced by the PCAWG Consortium. Our classifier achieves an accuracy of 91% on held-out tumor samples and 88% and 83% respectively on independent primary and metastatic samples, roughly double the accuracy of trained pathologists when presented with a metastatic tumour without knowledge of the primary.
View Article and Find Full Text PDFThe type and genomic context of cancer mutations depend on their causes. These causes have been characterized using signatures that represent mutation types that co-occur in the same tumours. However, it remains unclear how mutation processes change during cancer evolution due to the lack of reliable methods to reconstruct evolutionary trajectories of mutational signature activity.
View Article and Find Full Text PDFTranscription factor (TF) binding specificities (motifs) are essential for the analysis of gene regulation. Accurate prediction of TF motifs is critical, because it is infeasible to assay all TFs in all sequenced eukaryotic genomes. There is ongoing controversy regarding the degree of motif diversification among related species that is, in part, because of uncertainty in motif prediction methods.
View Article and Find Full Text PDFStress hormones bind and activate the glucocorticoid receptor (GR) in many tissues including the brain. We identified arginine and glutamate rich 1 (ARGLU1) in a screen for new modulators of glucocorticoid signaling in the CNS. Biochemical studies show that the glutamate rich C-terminus of ARGLU1 coactivates multiple nuclear receptors including the glucocorticoid receptor (GR) and the arginine rich N-terminus interacts with splicing factors and binds to RNA.
View Article and Find Full Text PDFProper regulation of germline gene expression is essential for fertility and maintaining species integrity. In the germline, a diverse repertoire of regulatory pathways promote the expression of endogenous germline genes and limit the expression of deleterious transcripts to maintain genome homeostasis. Here we show that the conserved TRIM-NHL protein, NHL-2, plays an essential role in the germline, modulating germline chromatin and meiotic chromosome organization.
View Article and Find Full Text PDFNat Genet
December 2018
Identifying the binding preferences of RNA-binding proteins (RBPs) is important in understanding their contribution to post-transcriptional regulation. Here, we review the current state-of-the art of RNA motif identification tools for RBPs. New in vivo and in vitro data sets provide sufficient statistical power to enable detection of relatively long and complex sequence and sequence-structure binding preferences, and recent computational methods are geared towards quantitative identification of these patterns.
View Article and Find Full Text PDFMutations of EXOSC3 have been linked to the rare neurological disorder known as Pontocerebellar Hypoplasia type 1B (PCH1B). EXOSC3 is one of three putative RNA-binding structural cap proteins that guide RNA into the RNA exosome, the cellular machinery that degrades RNA. Using RNAcompete, we identified a G-rich RNA motif binding to EXOSC3.
View Article and Find Full Text PDFThe majority of newly diagnosed prostate cancers are slow growing, with a long natural life history. Yet a subset can metastasize with lethal consequences. We reconstructed the phylogenies of 293 localized prostate tumors linked to clinical outcome data.
View Article and Find Full Text PDFGlobal transcriptomic imbalance is a ubiquitous feature associated with cancer, including hepatocellular carcinoma (HCC). Analyses of 1,225 clinical HCC samples revealed that a large numbers of RNA binding proteins (RBPs) are dysregulated and that RBP dysregulation is associated with poor prognosis. We further identified that oncogenic activation of a top candidate RBP, negative elongation factor E (NELFE), via somatic copy-number alterations enhanced MYC signaling and promoted HCC progression.
View Article and Find Full Text PDFRNA-binding proteins recognize RNA sequences and structures, but there is currently no systematic and accurate method to derive large (>12base) motifs de novo that reflect a combination of intrinsic preference to both sequence and structure. To address this absence, we introduce RNAcompete-S, which couples a single-step competitive binding reaction with an excess of random RNA 40-mers to a custom computational pipeline for interrogation of the bound RNA sequences and derivation of SSMs (Sequence and Structure Models). RNAcompete-S confirms that HuR, QKI, and SRSF1 prefer binding sites that are single stranded, and recapitulates known 8-10bp sequence and structure preferences for Vts1p and RBMY.
View Article and Find Full Text PDFRNA-binding proteins (RBPs) participate in diverse cellular processes and have important roles in human development and disease. The human genome, and that of many other eukaryotes, encodes hundreds of RBPs that contain canonical sequence-specific RNA-binding domains (RBDs) as well as numerous other unconventional RNA binding proteins (ucRBPs). ucRBPs physically associate with RNA but lack common RBDs.
View Article and Find Full Text PDFBackground: Tumour samples containing distinct sub-populations of cancer and normal cells present challenges in the development of reproducible biomarkers, as these biomarkers are based on bulk signals from mixed tumour profiles. ISOpure is the only mRNA computational purification method to date that does not require a paired tumour-normal sample, provides a personalized cancer profile for each patient, and has been tested on clinical data. Replacing mixed tumour profiles with ISOpure-preprocessed cancer profiles led to better prognostic gene signatures for lung and prostate cancer.
View Article and Find Full Text PDFRNA-binding proteins (RBPs) are important regulators of eukaryotic gene expression. Genomes typically encode dozens to hundreds of proteins containing RNA-binding domains, which collectively recognize diverse RNA sequences and structures. Recent advances in high-throughput methods for assaying the targets of RBPs in vitro and in vivo allow large-scale derivation of RNA-binding motifs as well as determination of RNA-protein interactions in living cells.
View Article and Find Full Text PDFCell Rep
December 2013
RNA-binding proteins play crucial roles in directing RNA translation to neuronal synapses. Staufen2 (Stau2) has been implicated in both dendritic RNA localization and synaptic plasticity in mammalian neurons. Here, we report the identification of functionally relevant Stau2 target mRNAs in neurons.
View Article and Find Full Text PDF