Objectives: Drawing on the socioecological model of sleep health, we formally examine the association between neighborhood disorder and sleep efficiency. While most studies focus on direct associations with neighborhood context, we also consider whether the relationship between religious attendance and sleep efficiency varies as a function of neighborhood disorder.
Design: We use ordinary least squares regression to model cross-sectional survey data.
Infect Agent Cancer
January 2025
Background: Helicobacter pylori (H. pylori) is a global infectious carcinogen. We aimed to evaluate the prevalence of H.
View Article and Find Full Text PDFIn daily life, we often make decisions based on relative value of the options, and we often derive these values from segmenting or integrating the outcomes of past episodes in memory. The neural correlates involved in value-based decision-making have been extensively studied in the literature, but few studies have investigated this topic in decisions that require segmenting or integrating episodic memory from related sources, and even fewer studies examine it in the context of spatial navigation. Building on the computational models from our previous studies, the current study investigates the neural substrates involved in decisions that require people either segment or integrate wayfinding outcomes involving different goals, across virtual spatial navigation tasks with differing demands.
View Article and Find Full Text PDFThe current study investigated how stress affects value-based decision-making during spatial navigation and different types of learning underlying decisions. Eighty-two adult participants (42 females) first learned to find object locations in a virtual environment from a fixed starting location (rigid learning) and then to find the same objects from unpredictable starting locations (flexible learning). Participants then decided whether to reach goal objects from the fixed or unpredictable starting location.
View Article and Find Full Text PDFReinforcement learning (RL) models have been influential in characterizing human learning and decision making, but few studies apply them to characterizing human spatial navigation and even fewer systematically compare RL models under different navigation requirements. Because RL can characterize one's learning strategies quantitatively and in a continuous manner, and one's consistency of using such strategies, it can provide a novel and important perspective for understanding the marked individual differences in human navigation and disentangle navigation strategies from navigation performance. One-hundred and fourteen participants completed wayfinding tasks in a virtual environment where different phases manipulated navigation requirements.
View Article and Find Full Text PDFJ Exp Psychol Learn Mem Cogn
August 2022
Valued-based decision-making has been studied for decades in myriad topics such as consumer spending and gambling, but very rarely in spatial navigation despite the link between the two being highly relevant to survival. Furthermore, how people integrate episodic memories, and what factors are related to the extent of memory integration in value-based decision-making, remain largely unknown. In the current study, participants learned locations of various objects in a virtual environment and then decided whether to reach goal objects from familiar starting locations or unpredictable ones, with different penalties associated with each option.
View Article and Find Full Text PDFWhen navigating our world we often first plan or retrieve a route to our goal, avoiding alternative paths to other destinations. Inspired by computational and animal models, we have recently demonstrated evidence that the human hippocampus supports prospective spatial coding, mediated by interactions with the prefrontal cortex. But the relationship between such signals and the need to discriminate possible routes based on their goal remains unclear.
View Article and Find Full Text PDFObjective: This study evaluated whether vestibular dysfunction is associated with reduced spatial navigation performance.
Study Design: Cross-sectional study.
Setting: Otolaryngology Clinic in the Johns Hopkins Outpatient Center and an analogous virtual reality (VR) environment.
A fundamental question in memory research is how the hippocampus processes contextual cues to retrieve distinct mnemonic associations. Prior research has emphasized the importance of hippocampal-prefrontal interactions for context-dependent memory. Our fMRI study examined the human medial temporal lobes (MTL) and their prefrontal interactions when retrieving memories associated with hierarchically organized task contexts.
View Article and Find Full Text PDFAlzheimers Dement (N Y)
May 2021
Introduction: We and collaborators discovered that flickering lights and sound at gamma frequency (40 Hz) reduce Alzheimer's disease (AD) pathology and alter immune cells and signaling in mice. To determine the feasibility of this intervention in humans we tested the safety, tolerability, and daily adherence to extended audiovisual gamma flicker stimulation.
Methods: Ten patients with mild cognitive impairment due to underlying AD received 1-hour daily gamma flicker using audiovisual stimulation for 4 or 8 weeks at home with a delayed start design.
There has been great interest in how previously acquired knowledge interacts with newly learned knowledge and how prior knowledge facilitates semantic and "schema" learning. In studies of episodic memory, it is broadly associated with interference. Very few studies have examined the balance between interference and facilitation over the course of temporally-extended events and its individual differences.
View Article and Find Full Text PDFA substantial amount of research has been conducted to uncover factors underlying the pronounced individual differences in spatial navigation. Spatial working memory capacity (SWM) is shown to be one important factor. In other domains such as reading comprehension, the role of working memory capacity in task performance differences depends on the difficulty of other task demands.
View Article and Find Full Text PDFMarked individual differences in the ability to mentally map our environment are pronounced not only among people of different ages or clinical conditions, but also within healthy young adults. Previous studies have shown that hippocampus size positively correlated with spatial navigation ability in healthy young adults, navigation experts, and patients with hippocampus lesions. However, a recent pre-registered study (Weisberg, Newcombe, & Chatterjee, 2019) with a large sample size (n = 90) did not observe this correlation in healthy young adults.
View Article and Find Full Text PDFPrevious studies from psychology, neuroscience and geography showed that environmental barriers fragment the representation of the environment, reduce spatial navigation efficiency, distort distance estimation and make spatial updating difficult. Despite these negative effects, limited research has examined how to overcome barriers and if individual differences mediate their causes and potential interventions. We hypothesize that the reduced visibility caused by barriers plays a major role in accumulating error in spatial updating and encoding spatial relationships.
View Article and Find Full Text PDFEnvironmental barriers fundamentally shape our behavior and conceptualization of space [1-5]. Evidence from rodents suggests that, in contrast to an open-field environment, where grid cells exhibit firing patterns with a 6-fold rotational symmetry [5, 6], barriers within the field abolish the 6-fold symmetry and fragment the grid firing fields into compartmentalized repeating "submaps" [5]. These results suggest that barriers may exert their influence on the cognitive map through organization of the metric representation of space provided by entorhinal neurons.
View Article and Find Full Text PDFJ Exp Psychol Learn Mem Cogn
August 2019
In the current study, we investigated the ways in which the acquisition and transfer of spatial knowledge were affected by (a) the type of spatial relations predominately experienced during learning (routes determined by walkways vs. straight-line paths between locations); (b) environmental complexity; and (c) the availability of rotational body-based information. Participants learned the layout of a virtual shopping mall by repeatedly searching for target storefronts located in 1 of the buildings.
View Article and Find Full Text PDFFront Hum Neurosci
July 2018
Previous studies showed that people could use either an egocentric or allocentric reference frame in spatial updating with body-based cues (i.e., physical body movements), but the adopted reference frame was anchored by the physical egocentric front when body-based cues were constrained.
View Article and Find Full Text PDFThe current study investigated the reference frame used in spatial updating when idiothetic cues to self-motion were minimized (desktop virtual reality). In Experiment 1, participants learned a layout of eight objects from a single perspective (learning heading) in a virtual environment. After learning, they were placed in the same virtual environment and used a keyboard to navigate to two of the learned objects (visible) before pointing to a third object (invisible).
View Article and Find Full Text PDFPsychon Bull Rev
June 2018
This study investigated how spatial updating strategies affected the selection of reference frames in path integration. Participants walked an outbound path consisting of three successive waypoints in a featureless environment and then pointed to the first waypoint. We manipulated the alignment of participants' final heading at the end of the outbound path with their initial heading to examine the adopted reference frame.
View Article and Find Full Text PDFAccurate wayfinding is essential to the survival of many animal species and requires the ability to maintain spatial orientation during locomotion. One of the ways that humans and other animals stay spatially oriented is through path integration, which operates by integrating self-motion cues over time, providing information about total displacement from a starting point. The neural substrate of path integration in mammals may exist in grid cells, which are found in dorsomedial entorhinal cortex and presubiculum and parasubiculum in rats.
View Article and Find Full Text PDF