Publications by authors named "Punithavathi Ranganathan"

Loss of immune tolerance to gut microflora is inextricably linked to chronic intestinal inflammation and colitis-associated colorectal cancer (CAC). The LRP5/6 signaling cascade in APCs contributes to immune homeostasis in the gut, but whether this pathway in APCs protects against CAC is not known. In the current study, using a mouse model of CAC, we show that the LRP5/6-β-catenin-IL-10 signaling axis in intestinal CD11c APCs protects mice from CAC by regulating the expression of tumor-promoting inflammatory factors in response to commensal flora.

View Article and Find Full Text PDF

Aberrant Wnt/β-catenin signaling occurs in several inflammatory diseases, including inflammatory bowel disease and inflammatory bowel disease-associated colon carcinogenesis. However, its role in shaping mucosal immune responses to commensals in the gut remains unknown. In this study, we investigated the importance of canonical Wnt signaling in CD11c APCs in controlling intestinal inflammation.

View Article and Find Full Text PDF

At mucosal sites such as the intestine, the immune system launches robust immunity against invading pathogens while maintaining a state of tolerance to commensal flora and ingested food Ags. The molecular mechanisms underlying this phenomenon remain poorly understood. In this study, we report that signaling by GPR81, a receptor for lactate, in colonic dendritic cells and macrophages plays an important role in suppressing colonic inflammation and restoring colonic homeostasis.

View Article and Find Full Text PDF

Dietary lipids and their metabolites activate members of the peroxisome proliferative-activated receptor (PPAR) family of transcription factors and are critical for colonic health. The PPARα isoform plays a vital role in regulating inflammation in various disease settings, but its role in intestinal inflammation, commensal homeostasis, and mucosal immunity in the gut are unclear. In this study, we demonstrate that the PPARα pathway in innate immune cells orchestrates gut mucosal immunity and commensal homeostasis by regulating the expression of IL-22 and the antimicrobial peptides RegIIIβ, RegIIIγ, and calprotectin.

View Article and Find Full Text PDF

Cisplatin-induced acute kidney injury is a serious problem in cancer patients during treatment of solid tumors. Currently, there are no therapies available to treat or prevent cisplatin nephrotoxicity. Since histone deacetylase (HDAC) inhibition augments cisplatin anti-tumor activity, we tested whether HDAC inhibitors can prevent cisplatin-induced nephrotoxicity and determined the underlying mechanism.

View Article and Find Full Text PDF

Despite greater understanding of acute kidney injury (AKI) in animal models, many of the preclinical studies are not translatable. Most of the data were derived from a bilateral renal pedicle clamping model with warm ischemia. However, ischemic injury of the kidney in humans is distinctly different and does not involve clamping of renal vessel.

View Article and Find Full Text PDF

Cisplatin is a highly effective chemotherapeutic drug used to treat a wide variety of solid tumors. However, its use was limited due its dose-limiting toxicity to the kidney. Currently, there are no therapies available to treat or prevent cisplatin nephrotoxicity.

View Article and Find Full Text PDF

Background: Guidance cue netrin-1 was shown to have protective effects in diabetic nephropathy. However, the role of its receptor UNC5B in diabetic kidney disease is unknown. Moreover, whether netrin-1 is protective against diabetic kidney disease in a genetic model of nephropathy and in the nephropathy prone DBA background is also unknown.

View Article and Find Full Text PDF

Aims: Cardiac injury is accompanied by dynamic changes in the expression of microRNAs (miRs). For example, miR-150 is down-regulated in patients with acute myocardial infarction, atrial fibrillation, dilated and ischaemic cardiomyopathy as well as in various mouse heart failure (HF) models. Circulating miR-150 has been recently proposed as a better biomarker of HF than traditional clinical markers such as brain natriuretic peptide.

View Article and Find Full Text PDF

Semaphorin 3A (sema3A) was recently identified as an early diagnostic biomarker of acute kidney injury. However, its role as a biomarker and/or mediator of chronic kidney disease (CKD) related to diabetic nephropathy is unknown. We examined the expression of sema3A in diabetic animal models and in humans and tested whether sema3A plays a pathogenic role in the development of diabetic nephropathy.

View Article and Find Full Text PDF

Acute kidney injury (AKI) is serious complication in hospitalized patients with high level of mortality. There is not much progress made for the past 50 years in reducing the mortality rate despite advances in understanding disease pathology. Using variety of animal models of acute kidney injury, scientist studies the pathogenic mechanism of AKI and to test therapeutic drugs, which may reduce renal injury.

View Article and Find Full Text PDF

Acute kidney injury (AKI) is a common problem in the hospital setting and intensive care unit. Despite improved understanding, there are no effective therapies available to treat AKI. A large body of evidence strongly suggests that ischemia reperfusion injury is an inflammatory disease mediated by both adaptive and innate immune systems.

View Article and Find Full Text PDF

Recent studies show that guidance molecules that are known to regulate cell migration during development may also play an important role in adult pathophysiologic states. One such molecule, semaphorin3A (sema3A), is highly expressed after acute kidney injury (AKI) in mice and humans, but its pathophysiological role is unknown. Genetic inactivation of sema3A protected mice from ischemia-reperfusion-induced AKI, improved tissue histology, reduced neutrophil infiltration, prevented epithelial cell apoptosis, and increased cytokine and chemokine excretion in urine.

View Article and Find Full Text PDF

The netrin-1 administration or overexpression is known to protect colon from acute colitis. However, the receptor that mediates netrin-1 protective activities in the colon during colitis remains unknown. We tested the hypothesis that UNC5B receptor is a critical mediator of protective function of netrin-1 in dextran sodium sulfate (DSS)-induced colitis using mice with partial deletion of UNC5B receptor.

View Article and Find Full Text PDF

Netrin-1 regulates cell survival and apoptosis by activation of its receptors, including UNC5B. However, the in vivo role of UNC5B in cell survival during cellular stress and tissue injury is unknown. We investigated the role of UNC5B in cell survival in response to stress using mice heterozygously expressing the UNC5B gene (UNC5B(-/flox)) and mice with targeted homozygous deletion of UNC5B in kidney epithelial cells (UNC5B(-/flox/GGT-cre)).

View Article and Find Full Text PDF

Organ cross talk exists in many diseases of the human and animal models of human diseases. A recent study demonstrated that inflammatory mediators can cause acute kidney injury and neutrophil infiltration in a mouse model of dextran sodium sulfate (DSS)-colitis. However, the chemokines and their receptors that may mediate distant organ effects in colitis are unknown.

View Article and Find Full Text PDF

Background: Semaphorin 3A is a secreted protein that regulates cell motility and attachment in axon guidance, vascular growth, immune cell regulation and tumor progression. However, nothing is known about its role in kidney pathophysiology. Here, we determined whether semaphorin3A is induced after acute kidney injury (AKI) and whether urinary semaphorin 3A can predict AKI in humans undergoing cardiopulmonary bypass (CPB).

View Article and Find Full Text PDF

Netrin-1 regulates inflammation but the mechanism by which this occurs is unknown. Here we explore the role of netrin-1 in regulating the production of the prostanoid metabolite PGE2 from neutrophils in in vitro and in vivo disease models. Ischemia reperfusion in wild-type and RAG-1 knockout mice induced severe kidney injury that was associated with a large increase in neutrophil infiltration and COX-2 expression in the infiltrating leukocytes.

View Article and Find Full Text PDF

Organ cross talk is increasingly appreciated in human disease, and inflammatory mediators are shown to mediate distant organ injury in many disease models. Colitis and intestinal injury are known to be mediated by infiltrating immune cells and their secreted cytokines. However, its effect on other organs, such as the kidney, has never been studied.

View Article and Find Full Text PDF

Acute kidney injury-induced organ fibrosis is recognized as a major risk factor for the development of chronic kidney disease, which remains one of the leading causes of death in the developed world. However, knowledge on molecules that may suppress the fibrogenic response after injury is lacking. In ischemic models of acute kidney injury, we demonstrate a new function of netrin-1 in regulating interstitial fibrosis.

View Article and Find Full Text PDF

Improper macrophage activation is pathogenically linked to various metabolic, inflammatory, and immune disorders. Therefore, regulatory proteins controlling macrophage activation have emerged as important new therapeutic targets. We recently demonstrated that netrin-1 regulates inflammation and infiltration of monocytes and ameliorates ischemia-reperfusion-induced kidney injury.

View Article and Find Full Text PDF

Inflammation plays a key role in the development and progression of diabetic kidney disease; however, the role of the anti-inflammatory molecule netrin-1 in diabetic kidney disease is unknown. We examined the role of netrin-1 in diabetes-induced kidney inflammation and injury using tubule-specific netrin-1 transgenic mice. Diabetes was induced using streptozotocin in wild-type and netrin-1 transgenic animals.

View Article and Find Full Text PDF

Background: Netrin-1 is a laminin-related secreted protein, is highly induced after tissue injury, and may serve as a marker of injury. However, the regulation of netrin-1 production is not unknown. Current study was carried out in mouse and mouse kidney cell line (TKPTS) to determine the signaling pathways that regulate netrin-1 production in response to injury.

View Article and Find Full Text PDF