Publications by authors named "Procopios Constantinou"

We use electrostatic force microscopy to spatially resolve random telegraph noise at the Si/SiO interface. Our measurements demonstrate that two-state fluctuations are localized at interfacial traps, with bias-dependent rates and amplitudes. These two-level systems lead to correlated carrier number and mobility fluctuations with a range of characteristic timescales; taken together as an ensemble, they give rise to a [Formula: see text] power spectral trend.

View Article and Find Full Text PDF

A topological magnetic material showcases a multitude of intriguing properties resulting from the compelling interplay between topology and magnetism. These include notable phenomena such as a large anomalous Nernst effect (ANE), an anomalous Hall effect (AHE), and a topological Hall effect (THE). In most cases, topological transport phenomena are prevalent at temperatures considerably lower than room temperature, presenting a challenge for practical applications.

View Article and Find Full Text PDF

The Si/SiO_{2} interface is populated by isolated trap states that modify its electronic properties. These traps are of critical interest for the development of semiconductor-based quantum sensors and computers, as well as nanoelectronic devices. Here, we study the electric susceptibility of the Si/SiO_{2} interface with nm spatial resolution using frequency-modulated atomic force microscopy.

View Article and Find Full Text PDF

Altermagnetism represents an emergent collinear magnetic phase with compensated order and an unconventional alternating even-parity wave spin order in the non-relativistic band structure. We investigate directly this unconventional band splitting near the Fermi energy through spin-integrated soft X-ray angular resolved photoemission spectroscopy. The experimentally obtained angle-dependent photoemission intensity, acquired from epitaxial thin films of the predicted altermagnet CrSb, demonstrates robust agreement with the corresponding band structure calculations.

View Article and Find Full Text PDF

Artificial lattices constructed from individual dopant atoms within a semiconductor crystal hold promise to provide novel materials with tailored electronic, magnetic, and optical properties. These custom-engineered lattices are anticipated to enable new, fundamental discoveries in condensed matter physics and lead to the creation of new semiconductor technologies including analog quantum simulators and universal solid-state quantum computers. This work reports precise and repeatable, substitutional incorporation of single arsenic atoms into a silicon lattice.

View Article and Find Full Text PDF

Atomically precise hydrogen desorption lithography using scanning tunnelling microscopy (STM) has enabled the development of single-atom, quantum-electronic devices on a laboratory scale. Scaling up this technology to mass-produce these devices requires bridging the gap between the precision of STM and the processes used in next-generation semiconductor manufacturing. Here, we demonstrate the ability to remove hydrogen from a monohydride Si(001):H surface using extreme ultraviolet (EUV) light.

View Article and Find Full Text PDF

We investigate the adsorption and thermal decomposition of triphenyl bismuth (TPB) on the silicon (001) surface using atomic-resolution scanning tunneling microscopy, synchrotron-based X-ray photoelectron spectroscopy, and density functional theory calculations. Our results show that the adsorption of TPB at room temperature creates both bismuth-silicon and phenyl-silicon bonds. Annealing above room temperature leads to increased chemical interactions between the phenyl groups and the silicon surface, followed by phenyl detachment and bismuth subsurface migration.

View Article and Find Full Text PDF

Two-dimensional dopant layers (δ-layers) in semiconductors provide the high-mobility electron liquids (2DELs) needed for nanoscale quantum-electronic devices. Key parameters such as carrier densities, effective masses, and confinement thicknesses for 2DELs have traditionally been extracted from quantum magnetotransport. In principle, the parameters are immediately readable from the one-electron spectral function that can be measured by angle-resolved photoemission spectroscopy (ARPES).

View Article and Find Full Text PDF

Magnetic interactions in combination with nontrivial band structures can give rise to several exotic physical properties such as a large anomalous Hall effect, the anomalous Nernst effect, and the topological Hall effect (THE). Antiferromagnetic (AFM) materials exhibit the THE due to the presence of nontrivial spin structures. EuCuAs crystallizes in a hexagonal structure with an AFM ground state (Néel temperature ∼ 16 K).

View Article and Find Full Text PDF

In this work, we show the feasibility of extreme ultraviolet (EUV) patterning on an HF-treated silicon (100) surface in the absence of a photoresist. EUV lithography is the leading lithography technique in semiconductor manufacturing due to its high resolution and throughput, but future progress in resolution can be hampered because of the inherent limitations of the resists. We show that EUV photons can induce surface reactions on a partially hydrogen-terminated silicon surface and assist the growth of an oxide layer, which serves as an etch mask.

View Article and Find Full Text PDF

Weyl semimetal is a unique topological phase with topologically protected band crossings in the bulk and robust surface states called Fermi arcs. Weyl nodes always appear in pairs with opposite chiralities, and they need to have either time-reversal or inversion symmetry broken. When the time-reversal symmetry is broken the minimum number of Weyl points (WPs) is two.

View Article and Find Full Text PDF

Pb(Zr,Ti)O (PZT) is the most common ferroelectric (FE) material widely used in solid-state technology. Despite intense studies of PZT over decades, its intrinsic band structure, electron energy depending on 3D momentum k, is still unknown. Here, Pb(Zr Ti )O using soft-X-ray angle-resolved photoelectron spectroscopy (ARPES) is explored.

View Article and Find Full Text PDF

Over the past two decades, prototype devices for future classical and quantum computing technologies have been fabricated by using scanning tunneling microscopy and hydrogen resist lithography to position phosphorus atoms in silicon with atomic-scale precision. Despite these successes, phosphine remains the only donor precursor molecule to have been demonstrated as compatible with the hydrogen resist lithography technique. The potential benefits of atomic-scale placement of alternative dopant species have, until now, remained unexplored.

View Article and Find Full Text PDF