Enterocytes and four classic secretory cell types derive from intestinal epithelial stem cells. Based on morphology, location, and canonical markers, goblet and Paneth cells are considered distinct secretory types. Here, we report high overlap in their transcripts and sites of accessible chromatin, in marked contrast to those of their enteroendocrine or tuft cell siblings.
View Article and Find Full Text PDFEnterocytes and four secretory cell types derive from stem cells located in intestinal crypts. Whereas secretory goblet and Paneth cells have long been considered distinct, we find high overlap in their transcripts and sites of accessible chromatin, in marked contrast to those of sibling enteroendocrine or tuft cells. Mouse and human goblet and Paneth cells express extraordinary fractions of selective antimicrobial genes, reflecting specific and variable gene responses to local niche signals.
View Article and Find Full Text PDFEnteroendocrine cells (EECs) secrete serotonin (enterochromaffin [EC] cells) or specific peptide hormones (non-EC cells) that serve vital metabolic functions. The basis for terminal EEC diversity remains obscure. By forcing activity of the transcription factor (TF) NEUROG3 in 2D cultures of human intestinal stem cells, we replicated physiologic EEC differentiation and examined transcriptional and cis-regulatory dynamics that culminate in discrete cell types.
View Article and Find Full Text PDFPlasticity among cell lineages is a fundamental, but poorly understood, property of regenerative tissues. In the gut tube, the small intestine absorbs nutrients, whereas the colon absorbs electrolytes. In a striking display of inherent plasticity, adult colonic mucosa lacking the chromatin factor SATB2 is converted to small intestine.
View Article and Find Full Text PDFEnteroendocrine cells (EECs), which secrete serotonin (enterochromaffin cells, EC) or a dominant peptide hormone, serve vital physiologic functions. As with any adult human lineage, the basis for terminal cell diversity remains obscure. We replicated human EEC differentiation , mapped transcriptional and chromatin dynamics that culminate in discrete cell types, and studied abundant EEC precursors expressing selected transcription factors (TFs) and gene programs.
View Article and Find Full Text PDFThe progeny of intestinal stem cells (ISCs) dedifferentiate in response to ISC attrition. The precise cell sources, transitional states, and chromatin remodeling behind this activity remain unclear. In the skin, stem cell recovery after injury preserves an epigenetic memory of the damage response; whether similar memories arise and persist in regenerated ISCs is not known.
View Article and Find Full Text PDFCell Stem Cell
January 2022
Adult stem cells maintain regenerative tissue structure and function by producing tissue-specific progeny, but the factors that preserve their tissue identities are not well understood. The small and large intestines differ markedly in cell composition and function, reflecting their distinct stem cell populations. Here we show that SATB2, a colon-restricted chromatin factor, singularly preserves LGR5 adult colonic stem cell and epithelial identity in mice and humans.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
September 2018
Embryo movement is essential to the formation of a functional skeleton. Using mouse and chick models, we previously showed that mechanical forces influence gene regulation and tissue patterning, particularly at developing limb joints. However, the molecular mechanisms that underpin the influence of mechanical signals are poorly understood.
View Article and Find Full Text PDFDynamic mechanical loading of synovial joints is necessary for normal joint development, as evidenced in certain clinical conditions, congenital disorders and animal models where dynamic muscle contractions are reduced or absent. Although the importance of mechanical forces on joint development is unequivocal, little is known about the molecular mechanisms involved. Here, using chick and mouse embryos, we observed that molecular changes in expression of multiple genes analyzed in the absence of mechanical stimulation are consistent across species.
View Article and Find Full Text PDFDuring appendicular skeletal development, the bi-potential cartilage anlagen gives rise to transient cartilage, which is eventually replaced by bone, and to articular cartilage that caps the ends of individual skeletal elements. While the molecular mechanism that regulates transient cartilage differentiation is relatively well understood, the mechanism of articular cartilage differentiation has only begun to be unraveled. Furthermore, the molecules that coordinate the articular and transient cartilage differentiation processes are poorly understood.
View Article and Find Full Text PDFGene Expr Patterns
January 2016
Articular cartilage present at the ends of appendicular skeletal elements provides friction-less movement to the synovial joints and any damage to this tissue can lead to a degenerative disease of joint called osteoarthritis. During past two decades although many genes e.g.
View Article and Find Full Text PDFThe articular cartilage, which lines the joints of the limb skeleton, is distinct from the adjoining transient cartilage, and yet, it differentiates as a unique population within a contiguous cartilage element. Current literature suggests that articular cartilage and transient cartilage originate from different cell populations. Using a combination of lineage tracing and pulse-chase of actively proliferating chondrocytes, we here demonstrate that, similar to transient cartilage, embryonic articular cartilage cells also originate from the proliferating chondrocytes situated near the distal ends of skeletal anlagen.
View Article and Find Full Text PDF