Publications by authors named "Ping-Hui Lin"

Article Synopsis
  • * Researchers used momentum-dependent electron energy-loss spectroscopy (q-EELS) to study these changes at different temperatures and found that the effective mass (m*) decreases, making electrons move about 20% faster as the CDW strength increases toward 100 K.
  • * The study highlights CuTe as an important material for investigating CDW phenomena and related correlations, with q-EELS being an effective tool for such research.
View Article and Find Full Text PDF

Charge density waves (CDWs) involved with electronic and phononic subsystems simultaneously are a common quantum state in solid-state physics, especially in low-dimensional materials. However, CDW phase dynamics in various dimensions are yet to be studied, and their phase transition mechanism is currently moot. Here we show that using the distinct temperature evolution of orientation-dependent ultrafast electron and phonon dynamics, different dimensional CDW phases are verified in CuTe.

View Article and Find Full Text PDF

Two-dimensional transition metal nitrides offer intriguing possibilities for achieving novel electronic and mechanical functionality owing to their distinctive and tunable bonding characteristics compared to other 2D materials. We demonstrate here the enabling effects of strong bonding on the morphology and functionality of 2D tungsten nitrides. The employed bottom-up synthesis experienced a unique substrate stabilization effect beyond van-der-Waals epitaxy that favored WN over lower metal nitrides.

View Article and Find Full Text PDF

Time-resolved angle-resolved photoemission spectroscopy (Tr-APRES) gives direct insight into electron dynamics by providing temporal-, energy-, and momentum-resolved information in one experiment. A major obstacle to using high harmonic generation (HHG) probe pulses for photoemission spectroscopy is the low conversion efficiency, that is, the low flux of probe photons. We use a Yb-KGW based duo-laser source with an oscillator to pump two separate amplifiers and generate two synchronized pulsed laser sources with average energies of 7.

View Article and Find Full Text PDF

We investigate with angle-resolved photoelectron spectroscopy the changes of the Fermi surface and the main bands from the paramagnetic state to the antiferromagnetic (AFM) state occurring below 72 K in Fe1.06Te. The evolution is completely different from that observed in Fe pnictides, as nesting is absent.

View Article and Find Full Text PDF

Using angle-resolved photoemission spectroscopy, we study the evolution of the number of carriers in Ba(Fe(1-x)Co(x))(2)As(2) as a function of Co content and temperature. We show that there is a k-dependent energy shift compared to density functional calculations, which is large below 100 K at low Co contents and reduces the volume of hole and electron pockets by a factor 2. This k shift becomes negligible at high Co content and could be due to interband charge or spin fluctuations.

View Article and Find Full Text PDF