Protein aggregation is a hallmark of neurodegenerative diseases and is also observed in the brains of elderly individuals without such conditions, suggesting that aging drives the accumulation of protein aggregates. However, the comprehensive understanding of age-dependent protein aggregates involved in brain aging remains unclear. Here, we investigated proteins that become sarkosyl-insoluble with age and identified hyaluronan and proteoglycan link protein 2 (HAPLN2), a hyaluronic acid-binding protein of the extracellular matrix at the nodes of Ranvier, as an age-dependent aggregating protein in mouse brains.
View Article and Find Full Text PDFIn recent years, the quest for surface modifications to promote neuronal cell interfacing and modulation has risen. This course is justified by the requirements of emerging technological and medical approaches attempting to effectively interact with central nervous system cells, as in the case of brain-machine interfaces or neuroprosthetic. In that regard, the remarkable cytocompatibility and ease of chemical functionalization characterizing surface-immobilized graphene-based nanomaterials (GBNs) make them increasingly appealing for these purposes.
View Article and Find Full Text PDF