J Neurosurg Case Lessons
April 2025
Background: The authors present a case of a young patient who presented with depression symptoms and epilepsy. She was found to have a low-grade glioneuronal tumor located in the septal region, a critical limbic area involved in neuropsychiatric disorders. This region includes the ventral striatum, a key component of the brain's reward processing circuitry, which has been targeted in deep brain stimulation trials for treatment-resistant depression.
View Article and Find Full Text PDFResults of the impact of reading books and viewing television on neurodevelopment have been mixed, without definitive evaluation to date. Using data from 11,875 US adolescents in the Adolescent Brain and Cognitive Development (ABCD) study, we investigated the associations between reading and television viewing on brain morphology and neurocognitive performance. After quality control, 8,125 participants' MRI scans and cognitive tests were analyzed in relation to their reading and TV habits.
View Article and Find Full Text PDFNeuroinformatics
January 2025
This paper introduces the Automated Lesion and Feature Extraction (ALFE) pipeline, an open-source, Python-based pipeline that consumes MR images of the brain and produces anatomical segmentations, lesion segmentations, and human-interpretable imaging features describing the lesions in the brain. ALFE pipeline is modeled after the neuroradiology workflow and generates features that can be used by physicians for quantitative analysis of clinical brain MRIs and for machine learning applications. The pipeline uses a decoupled design which allows the user to customize the image processing, image registrations, and AI segmentation tools without the need to change the business logic of the pipeline.
View Article and Find Full Text PDFMeningiomas are the most common primary intracranial tumors and can be associated with significant morbidity and mortality. Radiologists, neurosurgeons, neuro-oncologists, and radiation oncologists rely on brain MRI for diagnosis, treatment planning, and longitudinal treatment monitoring. However, automated, objective, and quantitative tools for non-invasive assessment of meningiomas on multi-sequence MR images are not available.
View Article and Find Full Text PDFDev Cogn Neurosci
June 2024
Coarse measures of socioeconomic status, such as parental income or parental education, have been linked to differences in white matter development. However, these measures do not provide insight into specific aspects of an individual's environment and how they relate to brain development. On the other hand, educational intervention studies have shown that changes in an individual's educational context can drive measurable changes in their white matter.
View Article and Find Full Text PDFHum Brain Mapp
February 2024
The linear mixed-effects model (LME) is a versatile approach to account for dependence among observations. Many large-scale neuroimaging datasets with complex designs have increased the need for LME; however LME has seldom been used in whole-brain imaging analyses due to its heavy computational requirements. In this paper, we introduce a fast and efficient mixed-effects algorithm (FEMA) that makes whole-brain vertex-wise, voxel-wise, and connectome-wide LME analyses in large samples possible.
View Article and Find Full Text PDFCross-sectional studies have linked differences in white matter tissue properties to reading skills. However, past studies have reported a range of, sometimes conflicting, results. Some studies suggest that white matter properties act as individual-level traits predictive of reading skill, whereas others suggest that reading skill and white matter develop as a function of an individual's educational experience.
View Article and Find Full Text PDFBackground And Purpose: Deep learning algorithms for segmentation of multiple sclerosis (MS) plaques generally require training on large datasets. This manuscript evaluates the effect of transfer learning from segmentation of another pathology to facilitate use of smaller MS-specific training datasets. That is, a model trained for detection of one type of pathology was re-trained to identify MS lesions and active demyelination.
View Article and Find Full Text PDFMeningiomas are the most common primary intracranial tumor in adults and can be associated with significant morbidity and mortality. Radiologists, neurosurgeons, neuro-oncologists, and radiation oncologists rely on multiparametric MRI (mpMRI) for diagnosis, treatment planning, and longitudinal treatment monitoring; yet automated, objective, and quantitative tools for non-invasive assessment of meningiomas on mpMRI are lacking. The BraTS meningioma 2023 challenge will provide a community standard and benchmark for state-of-the-art automated intracranial meningioma segmentation models based on the largest expert annotated multilabel meningioma mpMRI dataset to date.
View Article and Find Full Text PDFBackground: Neurocognitive deficits in pediatric cancer survivors occur frequently; however, individual outcomes are unpredictable. We investigate clinical, genetic, and imaging predictors of neurocognition in pediatric cancer survivors, with a focus on survivors of central nervous system (CNS) tumors exposed to radiation.
Methods: One hundred eighteen patients with benign or malignant cancers (median diagnosis age: 7; 32% embryonal CNS tumors) were selected from an existing multi-institutional cohort (RadART Pro) if they had: 1) neurocognitive evaluation; 2) available DNA; 3) standard imaging.
Radiol Artif Intell
January 2022
Purpose: To assess how well a brain MRI lesion segmentation algorithm trained at one institution performed at another institution, and to assess the effect of multi-institutional training datasets for mitigating performance loss.
Materials And Methods: In this retrospective study, a three-dimensional U-Net for brain MRI abnormality segmentation was trained on data from 293 patients from one institution (IN1) (median age, 54 years; 165 women; patients treated between 2008 and 2018) and tested on data from 51 patients from a second institution (IN2) (median age, 46 years; 27 women; patients treated between 2003 and 2019). The model was then trained on additional data from various sources: 285 multi-institution brain tumor segmentations, 198 IN2 brain tumor segmentations, and 34 IN2 lesion segmentations from various brain pathologic conditions.
Dev Cogn Neurosci
February 2022
During late childhood behavioral changes, such as increased risk-taking and emotional reactivity, have been associated with the maturation of cortico-cortico and cortico-subcortical circuits. Understanding microstructural changes in both white matter and subcortical regions may aid our understanding of how individual differences in these behaviors emerge. Restriction spectrum imaging (RSI) is a framework for modelling diffusion-weighted imaging that decomposes the diffusion signal from a voxel into hindered, restricted, and free compartments.
View Article and Find Full Text PDF