Decentralized or point-of-care (POC) manufacture of CAR-T cells is a potential strategy to improve accessibility and reduce cost and logistic challenges. A total of 10 relapsed/refractory patients (B cell acute lymphoblastic leukemia [B-ALL] = 6, diffuse large B cell lymphoma [DLBCL] = 4) were enrolled in this POC phase 1 study. Chimeric antigen receptor (CAR)-T cells were manufactured using the fully automated CliniMACS Prodigy system.
View Article and Find Full Text PDFBackground: Fanconi anaemia (FA) is a rare inherited bone marrow failure disease caused by germline pathogenic variants in any of the 22 genes involved in the FA-DNA interstrand crosslink (ICL) repair pathway. Accurate laboratory investigations are required for FA diagnosis for the clinical management of the patients. We performed chromosome breakage analysis (CBA), FANCD2 ubiquitination (FANCD2-Ub) analysis and exome sequencing of 142 Indian patients with FA and evaluated the efficiencies of these methods in FA diagnosis.
View Article and Find Full Text PDFReliable human erythroid progenitor cell (EPC) lines that can differentiate to the later stages of erythropoiesis are important cellular models for studying molecular mechanisms of human erythropoiesis in normal and pathological conditions. Two immortalized erythroid progenitor cells (iEPCs), HUDEP-2 and BEL-A, generated from CD34 hematopoietic progenitors by the doxycycline (dox) inducible expression of human papillomavirus E6 and E7 (HEE) genes, are currently being used extensively to study transcriptional regulation of human erythropoiesis and identify novel therapeutic targets for red cell diseases. However, the generation of iEPCs from patients with red cell diseases is challenging as obtaining a sufficient number of CD34 cells require bone marrow aspiration or their mobilization to peripheral blood using drugs.
View Article and Find Full Text PDF