Introduction: Disturbances in microvascular flow dynamics are hypothesized to precede the symptomatic phase of Alzheimer's disease (AD). However, evidence in presymptomatic AD remains elusive, underscoring the need for therapies targeting these early vascular changes.
Methods: We employed a multimodal approach, combining in vivo optical imaging, molecular techniques, and ex vivo magnetic resonance imaging, to investigate early capillary dysfunction in C57BL/6-Tg(Thy1-APPSwDutIowa)BWevn/Mmjax (Tg-SwDI) mice without memory impairment.
APOE-ɛ4 is a genetic risk factor for Alzheimer's disease (AD). AD is associated with reduced cerebral blood flow (CBF) and with microvascular changes that limit the transport of oxygen from blood into brain tissue: reduced microvascular cerebral blood volume and high relative transit time heterogeneity (RTH). Healthy APOE-ɛ4 carriers reveal brain regions with CBF compared with carriers of the common ɛ3 allele.
View Article and Find Full Text PDFIntroduction: Disturbances in microvascular flow dynamics are hypothesized to precede the symptomatic phase of Alzheimer's disease (AD). However, evidence in presymptomatic AD remains elusive, underscoring the need for therapies targeting these early vascular changes.
Methods: We employed a multimodal approach, combining in vivo optical imaging, molecular techniques, and ex vivo MRI, to investigate early capillary dysfunction in Tg-SwDI mice without memory impairment.
Ischemic conditioning and exercise have been suggested for protecting against brain ischemia-reperfusion injury. However, the endogenous protective mechanisms stimulated by these interventions remain unclear. Here, in a comprehensive translational study, we investigated the protective role of extracellular vesicles (EVs) released after remote ischemic conditioning (RIC), blood flow restricted resistance exercise (BFRRE), or high-load resistance exercise (HLRE).
View Article and Find Full Text PDFPeripheral nerve function is metabolically demanding and nerve energy failure has been implicated in the onset and development of diabetic peripheral neuropathy and neuropathic pain conditions. Distal peripheral nerve oxygen supply relies on the distribution of red blood cells (RBCs) in just a few, nearby capillary-sized vessels and is therefore technically challenging to characterize. We developed an approach to characterize distal sural nerve hemodynamics in anesthetized, adult male mice using two-photon laser scanning microscopy.
View Article and Find Full Text PDFNeuroimage Clin
September 2020
Age and apolipoprotein E (APOE) e4 genotype are two of the strongest known risk factors for sporadic Alzheimer's disease (AD). Neuroimaging has shown hemodynamic response changes with age, in asymptomatic carriers of the APOE e4 allele, and in AD. In this study, we aimed to characterize and differentiate age- and APOE gene-specific hemodynamic changes to breath-hold and visual stimulation.
View Article and Find Full Text PDFBackground: The high mortality and morbidity after SAH is partly due to DCI, which is traditionally ascribed to development of angiographic vasospasms. This relation has been challenged, and capillary flow disturbances are proposed as another mechanism contributing to brain damage after SAH.
Objective: To investigate capillary flow changes 4 days following experimental SAH.
Objective: Theoretical models are essential tools for studying microcirculatory function. Recently, the validity of a well-established phase separation model was questioned and it was claimed that it produces problematically low hematocrit predictions and lack of red cells in small diameter vessels. We conducted a quantitative evaluation of this phase separation model to establish common ground for future research.
View Article and Find Full Text PDFVascular changes are thought to contribute to the development of Alzheimer's disease, and both cerebral blood flow and its responses during neural activation are reduced before Alzheimer's disease symptoms onset. One hypothetical explanation is that capillary dysfunction reduces oxygen extraction efficacy. This study compares the morphology and hemodynamics of the microvasculature in the somatosensory cortex of 18-month-old APP/PS1ΔE9 (transgenic [Tg]) mice and wild-type (WT) littermates.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
February 2018
Capillary flow patterns are highly heterogeneous in the resting brain. During hyperemia, capillary transit-time heterogeneity (CTH) decreases, in proportion to blood's mean transit time (MTT) in passive, compliant microvascular networks. Previously, we found that functional activation reduces the CTH:MTT ratio, suggesting that additional homogenization takes place through active neurocapillary coupling mechanisms.
View Article and Find Full Text PDFObjective: In vivo imaging of the microcirculation and network-oriented modeling have emerged as powerful means of studying microvascular function and understanding its physiological significance. Network-oriented modeling may provide the means of summarizing vast amounts of data produced by high-throughput imaging techniques in terms of key, physiological indices. To estimate such indices with sufficient certainty, however, network-oriented analysis must be robust to the inevitable presence of uncertainty due to measurement errors as well as model errors.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
December 2016
Functional hyperemia reduces oxygen extraction efficacy unless counteracted by a reduction of capillary transit-time heterogeneity of blood. We adapted a bolus tracking approach to capillary transit-time heterogeneity estimation for two-photon microscopy and then quantified changes in plasma mean transit time and capillary transit-time heterogeneity during forepaw stimulation in anesthetized mice (C57BL/6NTac). In addition, we analyzed transit time coefficient of variance = capillary transit-time heterogeneity/mean transit time, which we expect to remain constant in passive, compliant microvascular networks.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
March 2015
The interpretation of regional blood flow and blood oxygenation changes during functional activation has evolved from the concept of 'neurovascular coupling', and hence the regulation of arteriolar tone to meet metabolic demands. The efficacy of oxygen extraction was recently shown to depend on the heterogeneity of capillary flow patterns downstream. Existing compartment models of the relation between tissue metabolism, blood flow, and blood oxygenation, however, typically assume homogenous microvascular flow patterns.
View Article and Find Full Text PDFBrain imaging in Klinefelter syndrome (47, XXY) (KS), a genetic disorder characterized by the presence of an extra X chromosome, may contribute to understanding the relationship between gene expression, brain structure, and subsequent cognitive disabilities and psychiatric disorders. We conducted the largest to date voxel-based morphometry study of 65 KS subjects and 65 controls matched for age and education and correlated these data to neuropsychological test scores. The KS patients had significantly smaller total brain volume (TBV), total gray matter volume (GMV) and total white matter volume (WMV) compared to controls, whereas no volumetric difference in cerebral spinal fluid (CSF) was found.
View Article and Find Full Text PDFUnlabelled: Stress sensitivity and serotonergic neurotransmission interact, e.g. individuals carrying the low-expressing variants (S and LG) of the 5-HTTLPR promoter polymorphism of the serotonin transporter (SERT) gene are at higher risk for developing mood disorders when exposed to severe stress and display higher cortisol responses when exposed to psychosocial stressors relative to high expressing 5-HTTLPR variants.
View Article and Find Full Text PDFWe investigate the use of kernel principal component analysis (PCA) and the inverse problem known as pre-image estimation in neuroimaging: i) We explore kernel PCA and pre-image estimation as a means for image denoising as part of the image preprocessing pipeline. Evaluation of the denoising procedure is performed within a data-driven split-half evaluation framework. ii) We introduce manifold navigation for exploration of a nonlinear data manifold, and illustrate how pre-image estimation can be used to generate brain maps in the continuum between experimentally defined brain states/classes.
View Article and Find Full Text PDFThe effects of physiological noise may significantly limit the reproducibility and accuracy of BOLD fMRI. However, physiological noise evidences a complex, undersampled temporal structure and is often non-orthogonal relative to the neuronally-linked BOLD response, which presents a significant challenge for identifying and removing such artifact. This paper presents a multivariate, data-driven method for the characterization and removal of physiological noise in fMRI data, termed PHYCAA (PHYsiological correction using Canonical Autocorrelation Analysis).
View Article and Find Full Text PDFArch Gen Psychiatry
June 2011
Context: Both hallucinogens and 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy") have direct agonistic effects on postsynaptic serotonin(2A) receptors, the key site for hallucinogenic actions. In addition, MDMA is a potent releaser and reuptake inhibitor of presynaptic serotonin.
Objective: To assess the differential effects of MDMA and hallucinogen use on cerebral serotonin transporter (SERT) and serotonin(2A) receptor binding.
There is significant current interest in decoding mental states from neuroimages. In this context kernel methods, e.g.
View Article and Find Full Text PDF