Publications by authors named "Pengxiao Cao"

Although transplantation of c-kit+ cardiac progenitor cells (CPCs) significantly alleviates post-myocardial infarction left ventricular dysfunction, generation of cardiomyocytes by exogenous CPCs in the recipient heart has often been limited. Inducing robust differentiation would be necessary for improving the efficacy of the regenerative cardiac cell therapy. We assessed the hypothesis that differentiation of human c-kit+ CPCs can be enhanced by priming them with cardiac transcription factors (TFs).

View Article and Find Full Text PDF

Extracellular microvesicles (EVs) have been recognized for many potential clinical applications including biomarkers for disease diagnosis. In this study, we identified a major population of EVs by simply screening fluid samples with a nanosizer. Unlike other EVs, this extracellular nanovesicle (named HG-NV, HG-NV stands for HomoGenous nanovesicle as well as for Huang-Ge- nanovesicle) can be detected with a nanosizer with minimal in vitro manipulation and are much more homogenous in size (8-12 nm) than other EVs.

View Article and Find Full Text PDF

Liver metastasis accounts for many of the cancer deaths in patients. Effective treatment for metastatic liver tumors is not available. Here, we provide evidence for the role of miR-18a in the induction of liver M1 (F4/80+interferon gamma (IFNγ)+IL-12+) macrophages.

View Article and Find Full Text PDF

A recent phase I clinical trial (SCIPIO) has shown that autologous c-kit+ cardiac progenitor cells (CPCs) improve cardiac function and quality of life when transplanted into patients with ischemic heart disease. Although c-kit is widely used as a marker of resident CPCs, its role in the regulation of the cellular characteristics of CPCs remains unknown. We hypothesized that c-kit plays a role in the survival, growth, and migration of CPCs.

View Article and Find Full Text PDF
Article Synopsis
  • The study tackles the challenge of delivering drugs to the brain for treating central nervous system conditions, specifically focusing on a grapefruit-derived nanovector (GNV) designed to carry miR17 for brain tumor therapy.
  • GNVs modified with folic acid (FA-GNVs) effectively target brain tumors that express folate receptors, enhancing the delivery and reducing toxicity of the RNA-carrying component.
  • Intranasal delivery of miR17 via FA-pGNVs resulted in quick uptake by tumor cells and significantly slowed tumor growth in mice, suggesting a promising noninvasive treatment method for brain diseases.
View Article and Find Full Text PDF

Although transplantation of c-kit+ cardiac stem cells (CSCs) has been shown to alleviate left ventricular (LV) dysfunction induced by myocardial infarction (MI), the number of exogenous CSCs remaining in the recipient heart following transplantation and their mechanism of action remain unclear. We have previously developed a highly sensitive and accurate method to quantify the absolute number of male murine CSCs in female recipient organs after transplantation. In the present study, we used this method to monitor the number of donor CSCs in the recipient heart after intracoronary infusion.

View Article and Find Full Text PDF

Polymeric implants (millirods) have been tested for local delivery of chemotherapeutic agents in cancer treatment. Modeling of drug release profiles is critical as it may provide theoretical insights on rational implant design. In this study, a biodegradable poly (ε-caprolactone) (PCL) polymeric implant delivery system was tested to deliver green tea polyphenols (GTPs), both in vitro and in vivo.

View Article and Find Full Text PDF

This review describes the scientific background, current achievement and future perspective of combination therapy using polymer nanoparticle drug carriers in cancer treatment. Nanotechnology-based drug delivery is expected to dramatically change combination cancer therapy by controlling accumulation and distribution patterns of multiple drugs selectively in disease sites. Rationally designed polymer materials can produce functional nanoparticulate drug carriers that can be used in various biomedical applications.

View Article and Find Full Text PDF
Article Synopsis
  • Many chemopreventive agents struggle with bioavailability during testing, even at high oral doses.
  • A new delivery system using polycaprolactone implants was developed, allowing controlled release of compounds and addressing oral bioavailability challenges.
  • This method has been shown to significantly enhance the effectiveness of compounds like curcumin and Withaferin A, providing improved outcomes in animal studies while reducing the total dosage needed.
View Article and Find Full Text PDF

The polyphenolics in green tea are believed to be the bioactive components. However, poor bioavailability following ingestion limits their efficacy in vivo. In this study, polyphenon E (poly E), a standardized green tea extract, was administered by sustained-release polycaprolactone implants (two, 2-cm implants; 20% drug load) grafted subcutaneously or via drinking water (0.

View Article and Find Full Text PDF

Green tea catechins and hydrolyzable tannins are gaining increasing attention as chemopreventive agents. However, their mechanism of action is poorly understood. We investigated the effects of four green tea catechins and two hydrolyzable tannins on microsome-induced benzo[a]pyrene (BP)-DNA adducts and the possible structure-activity relationship.

View Article and Find Full Text PDF