Publications by authors named "Peng-Lu Zhao"

Under certain symmetries, degenerate points in three-dimensional metals form one-dimensional nodal lines. These nodal lines sometimes exhibit intricate knotted structures and have been studied in various contexts. As one of the most common physical perturbations, disorder effects often trigger novel quantum phase transitions.

View Article and Find Full Text PDF

Topological insulators (TIs) are an exciting discovery because of their robustness against disorder and interactions. Recently, second-order TIs have been attracting increasing attention, because they host topologically protected 1D hinge states in 3D or 0D corner states in 2D. A significantly critical issue is whether the second-order TIs also survive interactions, but it is still unexplored.

View Article and Find Full Text PDF

Metal-insulator transitions driven by magnetic fields have been extensively studied in 2D, but a 3D theory is still lacking. Motivated by recent experiments, we develop a scaling theory for the metal-insulator transitions in the strong-magnetic-field quantum limit of a 3D system. By using a renormalization-group calculation to treat electron-electron interactions, electron-phonon interactions, and disorder on the same footing, we obtain the critical exponent that characterizes the scaling relations of the resistivity to temperature and magnetic field.

View Article and Find Full Text PDF