Proc Biol Sci
December 2018
Coral reefs are increasingly threatened by thermal bleaching and tropical storm events associated with rising sea surface temperatures. Deeper habitats offer some protection from these impacts and may safeguard reef-coral biodiversity, but their faunas are largely undescribed for the Indo-Pacific. Here, we show high species richness of scleractinian corals in mesophotic habitats (30-125 m) for the northern Great Barrier Reef region that greatly exceeds previous records for mesophotic habitats globally.
View Article and Find Full Text PDFMass bleaching associated with unusually high sea temperatures represents one of the greatest threats to corals and coral reef ecosystems. Deeper reef areas are hypothesized as potential refugia, but the susceptibility of Scleractinian species over depth has not been quantified. During the most severe bleaching event on record, we found up to 83% of coral cover severely affected on Maldivian reefs at a depth of 3-5 m, but significantly reduced effects at 24-30 m.
View Article and Find Full Text PDFMesophotic coral ecosystems in the Indo-Pacific remain relatively unexplored, particularly at lower mesophotic depths (≥60 m), despite their potentially large spatial extent. Here, we used a remotely operated vehicle to conduct a qualitative assessment of the zooxanthellate coral community at lower mesophotic depths (60-125 m) at 10 different locations in the Great Barrier Reef Marine Park and the Coral Sea Commonwealth Marine Reserve. Lower mesophotic coral communities were present at all 10 locations, with zooxanthellate scleractinian corals extending down to ~100 metres on walls and ~125 m on steep slopes.
View Article and Find Full Text PDFAn analysis of present-day global depth distributions of reef-building corals and underlying environmental drivers contradicts a commonly held belief that ocean warming will promote tropical coral expansion into temperate latitudes. Using a global data set of a major group of reef corals, we found that corals were confined to shallower depths at higher latitudes (up to 0.6 meters of predicted shallowing per additional degree of latitude).
View Article and Find Full Text PDF