We report that long double-stranded DNA confined to quasi-1D nanochannels undergoes superdiffusive motion under the action of the enzyme T4 DNA ligase in the presence of necessary co-factors. Inside the confined environment of the nanochannel, double-stranded DNA molecules stretch out due to self-avoiding interactions. In absence of a catalytically active enzyme, we see classical diffusion of the center of mass.
View Article and Find Full Text PDFPreeclampsia is a potentially fatal pregnancy disorder affecting millions of women around the globe. Dysregulation in gene and protein expression within key biological pathways controlling angiogenesis has been implicated in the development of preeclampsia. Altered CpG methylation, a type of epimutation, may underlie this pathway dysregulation.
View Article and Find Full Text PDFExposure to elevated levels of the toxic metals inorganic arsenic (iAs) and cadmium (Cd) represents a major global health problem. These metals often occur as mixtures in the environment, creating the potential for interactive or synergistic biological effects different from those observed in single exposure conditions. In the present study, environmental mixtures collected from two waste sites in China and comparable mixtures prepared in the laboratory were tested for toxicogenomic response in placental JEG-3 cells.
View Article and Find Full Text PDFExpression of the antioxidant gene heme oxygenase-1 (HO-1) is primarily induced through NF-E2-related factor 2 (Nrf2)-mediated activation of the antioxidant response element (ARE). Gene transcription is coordinately regulated by transcription factor activity at enhancer elements and epigenetic alterations such as the posttranslational modification of histone proteins. However, the role of histone modifications in the Nrf2-ARE axis remains largely uncharacterized.
View Article and Find Full Text PDFThere is strong epidemiologic evidence linking chronic exposure to inorganic arsenic (iAs) to myriad adverse health effects, including cancer of the bladder. We set out to identify DNA methylation patterns associated with arsenic and its metabolites in exfoliated urothelial cells (EUCs) that originate primarily from the urinary bladder, one of the targets of arsenic-induced carcinogenesis. Genome-wide, gene-specific promoter DNA methylation levels were assessed in EUCs from 46 residents of Chihuahua, Mexico, and the relationship was examined between promoter methylation profiles and the intracellular concentrations of total arsenic and arsenic species.
View Article and Find Full Text PDFExposure to toxic metals poses a serious human health hazard based on ubiquitous environmental presence, the extent of exposure, and the toxicity and disease states associated with exposure. This global health issue warrants accurate and reliable models derived from the risk assessment process to predict disease risk in populations. There has been considerable interest recently in the impact of environmental toxicants such as toxic metals on the epigenome.
View Article and Find Full Text PDFResveratrol, a natural polyphenol, increases cellular antioxidant capacity by inducing the expression of a battery of cytoprotective genes through an antioxidant responsive element (ARE). However, upstream signaling events initiated by resveratrol leading to the activation of an ARE enhancer, particularly in immune cells, have not been fully elucidated. In this study, ARE-dependent transcriptional activation of the ferritin heavy chain (ferritin H) gene by resveratrol was further investigated in Jurkat T cells and human peripheral blood mononuclear cells.
View Article and Find Full Text PDFAntioxidant genes such as ferritin are transcriptionally activated in oxidative stress via the antioxidant responsive element (ARE), to which nuclear factor-E2-related factor 2 (Nrf2) binds and activates transcription. Histone modification plays a cooperative and essential role in transcriptional regulation; however, its role in antioxidant gene transcription remains elusive. Arsenic exposure activated ferritin transcription via the ARE concomitant with increased methylation of histones H4Arg3 (H4R3) and H3Arg17 (H3R17).
View Article and Find Full Text PDFReactive oxygen species (ROS) are generated during mitochondrial oxidative metabolism as well as in cellular response to xenobiotics, cytokines, and bacterial invasion. Oxidative stress refers to the imbalance due to excess ROS or oxidants over the capability of the cell to mount an effective antioxidant response. Oxidative stress results in macromolecular damage and is implicated in various disease states such as atherosclerosis, diabetes, cancer, neurodegeneration, and aging.
View Article and Find Full Text PDFFree Radic Biol Med
May 2008
Tight regulation of intracellular iron levels in response to mitochondrial dysfunction is an important mechanism that prevents oxidative stress, thereby limiting cellular damage. Here, we describe a cytoprotective response involving transcriptional activation of the ferritin H gene in response to the mitochondrial complex I inhibitor and neurotoxic compound rotenone. Rotenone exposure increased ferritin H mRNA and protein synthesis in NIH3T3 fibroblasts and SH-SY5Y neuroblastoma cells.
View Article and Find Full Text PDF