Human norovirus causes more than 700 million illnesses annually. Extensive genetic diversity and a paucity of information on conserved neutralizing epitopes pose major obstacles to the design of broadly protective norovirus immunogens. Here, we used high-resolution liquid chromatography-tandem mass spectrometry (LC-MS/MS)-driven proteomics to quantitatively characterize the circulating serum IgG repertoire before and after immunization with an experimental monovalent norovirus GII.
View Article and Find Full Text PDFNucleoside-modified mRNA-LNP vaccines have revolutionized vaccine development against infectious pathogens due to their ability to elicit potent humoral and cellular immune responses. In this article, we present the results of the first norovirus vaccine candidate employing mRNA-LNP platform technology. The mRNA-LNP bivalent vaccine encoding the major capsid protein VP1 from GI.
View Article and Find Full Text PDFGenogroup II (GII) noroviruses are a major cause of diarrheal disease burden in children in both high- and low-income countries. GII.17 noroviruses are composed of distinct genetic clusters (I, II, IIIa, and IIIb) and have shown potential for replacing historically more prevalent GII.
View Article and Find Full Text PDFHuman norovirus is the leading cause of acute gastroenteritis. Young children and the elderly bear the greatest burden of disease, representing more than 200,000 deaths annually. Infection prevalence peaks at younger than 2 years and is driven by novel GII.
View Article and Find Full Text PDFThere are significant challenges to the development of a pediatric norovirus vaccine, mainly due to the antigenic diversity among strains infecting young children. Characterizing human norovirus serotypes and understanding norovirus immunity in naïve children would provide key information for designing rational vaccine platforms. In this study, 26 Nicaraguan children experiencing their first norovirus acute gastroenteritis (AGE) episode during the first 18 months of life were investigated.
View Article and Find Full Text PDFUnderstanding the complex interactions between virus and host that drive new strain evolution is key to predicting the emergence potential of variants and informing vaccine development. Under our hypothesis, future dominant human norovirus GII.4 variants with critical antigenic properties that allow them to spread are currently circulating undetected, having diverged years earlier.
View Article and Find Full Text PDFJ Pediatric Infect Dis Soc
October 2022
A birth cohort design was used to understand whether heterotypic ligand-blocking norovirus antibodies provide cross-protection within the GII genogroup. We found that almost one-half of children who experienced a norovirus GII episode had preexisting antibodies heterotypic to the infecting genotype; therefore, these antibodies did not provide cross-protection.
View Article and Find Full Text PDFHuman norovirus is a leading cause of acute gastroenteritis, driven by antigenic variants within the GII.4 genotype. Antibody responses to GII.
View Article and Find Full Text PDFCell Mol Gastroenterol Hepatol
March 2022
Background & Aims: Noroviruses (NoVs) are the leading cause of acute gastroenteritis worldwide and are associated with significant morbidity and mortality. Moreover, an asymptomatic carrier state can persist following acute infection, promoting NoV spread and evolution. Thus, defining immune correlates of NoV protection and persistence is needed to guide the development of future vaccines and limit viral spread.
View Article and Find Full Text PDFThe control of re-occurring pandemic pathogens requires understanding the origins of new pandemic variants and the factors that drive their global spread. This is especially important for GII.4 norovirus, where vaccines under development offer promise to prevent hundreds of millions of annual gastroenteritis cases.
View Article and Find Full Text PDFHuman noroviruses are non-enveloped, single-strand RNA viruses that cause pandemic outbreaks of acute gastroenteritis. A bivalent vaccine containing GI.1 and GII.
View Article and Find Full Text PDFHuman norovirus (HuNoV) is the leading cause of global infectious acute gastroenteritis, causing ~20% of reported diarrheal episodes. Typically, GII.4 strains cause 50-70% of yearly outbreaks, and pandemic waves of disease approximately every 2-7 years due to rapid evolution.
View Article and Find Full Text PDFCell Mol Gastroenterol Hepatol
July 2021
Background & Aims: Human norovirus infection is the leading cause of acute gastroenteritis. Genetic polymorphisms, mediated by the FUT2 gene (secretor enzyme), define strain susceptibility. Secretors express a diverse set of fucosylated histoblood group antigen carbohydrates (HBGA) on mucosal cells; nonsecretors (FUT2) express a limited array of HBGAs.
View Article and Find Full Text PDFRapidly evolving RNA viruses, such as the GII.4 strain of human norovirus (HuNoV), and their vaccines elicit complex serological responses associated with previous exposure. Specific correlates of protection, moreover, remain poorly understood.
View Article and Find Full Text PDFEmergent strains of human norovirus seed pandemic waves of disease. These new strains have altered ligand binding and antigenicity characteristics. Study of viral variants isolated from immunosuppressed patients with long-term norovirus infection indicates that initial virus evolution occurs at the same antigenic sites as in pandemic strains.
View Article and Find Full Text PDFExtensive antigenic diversity within the GII.4 genotype of human norovirus is a major driver of pandemic emergence and a significant obstacle to development of cross-protective immunity after natural infection and vaccination. However, human and mouse monoclonal antibody studies indicate that, although rare, antibodies to conserved GII.
View Article and Find Full Text PDFBackground: Human noroviruses are the leading cause of acute gastroenteritis. Strains of the GII.4 genotype cause pandemic waves associated with viral evolution and subsequent antigenic drift and ligand-binding modulation.
View Article and Find Full Text PDF