The continuous evolution of construction technologies, particularly in reinforced concrete production, demands advanced, reliable, and efficient methodologies for real-time monitoring and prediction of concrete compressive strength. Traditional laboratory methods for assessing compressive strength are time-intensive and can introduce delays in construction workflows. This study introduces a comprehensive framework for a system designed to predict early-age compressive strength of concrete through continuous monitoring of the cement hydration process using a custom artificial intelligence (AI) model.
View Article and Find Full Text PDFThe proper design of concrete mixtures is a critical task in concrete technology, where optimal strength, eco-friendliness, and production efficiency are increasingly demanded. While traditional analytical methods, such as the Three Equations Method, offer foundational approaches to mix design, they often fall short in handling the complexity of modern concrete technology. Machine learning-based models have demonstrated notable efficacy in predicting concrete compressive strength, addressing the limitations of conventional methods.
View Article and Find Full Text PDFThe design of concrete mixtures is crucial in concrete technology, aiming to produce concrete that meets specific quality and performance criteria. Modern standards require not only strength but also eco-friendliness and production efficiency. Based on the Three Equation Method, conventional mix design methods involve analytical and laboratory procedures but are insufficient for contemporary concrete technology, leading to overengineering and difficulty predicting concrete properties.
View Article and Find Full Text PDFConcrete mix design is one of the most critical issues in concrete technology. This process aims to create a concrete mix which helps deliver concrete with desired features and quality. Contemporary requirements for concrete concern not only its structural properties, but also increasingly its production process and environmental friendliness, forcing concrete producers to use both chemically and technologically complex concrete mixtures.
View Article and Find Full Text PDFMaterials (Basel)
October 2020
The technological process of concrete production consists of several parts, including concrete mix design, concrete mix production, transportation of fresh concrete mix to a construction site, placement in concrete framework, and curing. Proper execution of these steps provides good quality concrete. Some factors can disturb the technological process, mainly temperature and excessive precipitation.
View Article and Find Full Text PDFSensors (Basel)
January 2020
The monitoring of a structural condition of steel bridges is an important issue. Good condition of infrastructure facilities ensures the safety and economic well-being of society. At the same time, due to the continuous development, rising wealth of the society and socio-economic integration of countries, the number of infrastructural objects is growing.
View Article and Find Full Text PDFConcrete mix design is a complex and multistage process in which we try to find the best composition of ingredients to create good performing concrete. In contemporary literature, as well as in state-of-the-art corporate practice, there are some methods of concrete mix design, from which the most popular are methods derived from The Three Equation Method. One of the most important features of concrete is compressive strength, which determines the concrete class.
View Article and Find Full Text PDFIn the recent studies on chitosan hydrogels, it was found that understanding both rheological and structural properties plays an important role in their application. Therefore, a combination of two independent techniques was applied to investigate micro- and macroscopic properties of chitosan colloidal system. Studies on viscous properties, as well as the sol-gel phase transition process, were performed using rheological methods coupled with the small angle light scattering (SALS) technique.
View Article and Find Full Text PDFSensors (Basel)
December 2018
Remote sensing in structural diagnostics has recently been gaining attention. These techniques allow the creation of three-dimensional projections of the measured objects, and are relatively easy to use. One of the most popular branches of remote sensing is terrestrial laser scanning.
View Article and Find Full Text PDFIn this paper, starch pastes in the form of solutions and gels were investigated to determine viscoelastic properties and sol-gel phase transition temperatures using rheological methods. The gelatinization process was carried out at a temperature of 95 °C with the use of a pressureless starch cell with a stirrer. Starch pastes obtained were used to determine rheological properties under isothermal conditions (in the temperature range of 45-25 °C) by a cone-plate measurement system.
View Article and Find Full Text PDFPolymers (Basel)
January 2018
Chitosan colloidal systems, created by dispersing in aqueous solutions of hydrochloric acid, with and without the addition of disodium β-glycerophosphate (β-NaGP), were prepared for the investigation of forming mechanisms of chitosan hydrogels. Three types of chitosan were used in varying molecular weights. The impacts of the charge and shape of the macromolecules on the phase transition process were assessed.
View Article and Find Full Text PDF