Taxonomic diversity effects on forest productivity and response to climate extremes range from positive to negative, suggesting a key role for complex interactions among neighbouring trees. To elucidate how neutral interactions, hierarchical competition and resource partitioning between neighbours' shape tree growth and climate response in a highly diverse Amazonian forest, we combined 30 years of tree censuses with measurements of water- and carbon-related traits. We modelled individual tree growth response to climate and neighbourhood to disentangle the relative effect of neighbourhood densities, trait hierarchies and dissimilarities.
View Article and Find Full Text PDFA plant's structure is the result of constant adaptation and evolution to the surrounding environment. From this perspective, our goal is to investigate the mass and radius distribution of a particular plant organ, namely the searcher shoot, by providing a Reinforcement Learning (RL) environment, that we call Searcher-Shoot, which considers the mechanics due to the mass of the shoot and leaves. We uphold the hypothesis that plants maximize their length, avoiding a maximal stress threshold.
View Article and Find Full Text PDFKnowledge of the physiological mechanisms underlying species vulnerability to drought is critical for better understanding patterns of tree mortality. Investigating plant adaptive strategies to drought should thus help to fill this knowledge gap, especially in tropical rainforests exhibiting high functional diversity. In a semi-controlled drought experiment using 12 rainforest tree species, we investigated the diversity in hydraulic strategies and whether they determined the ability of saplings to use stored non-structural carbohydrates during an extreme imposed drought.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2024
Somatic mutations potentially play a role in plant evolution, but common expectations pertaining to plant somatic mutations remain insufficiently tested. Unlike in most animals, the plant germline is assumed to be set aside late in development, leading to the expectation that plants accumulate somatic mutations along growth. Therefore, several predictions were made on the fate of somatic mutations: mutations have generally low frequency in plant tissues; mutations at high frequency have a higher chance of intergenerational transmission; branching topology of the tree dictates mutation distribution; and exposure to UV (ultraviolet) radiation increases mutagenesis.
View Article and Find Full Text PDFTrait-based ecology has improved our understanding of the functioning of organisms, communities, ecosystems, and beyond. However, its predictive ability remains limited as long as phenotypic integration and temporal dynamics are not considered. We highlight how the morphogenetic processes that shape the 3D development of a plant during its lifetime affect its performance.
View Article and Find Full Text PDFPLoS Comput Biol
October 2023
Climbing plants exhibit specialized shoots, called "searchers", to cross spaces and alternate between spatially discontinuous supports in their natural habitats. To achieve this task, searcher shoots combine both primary and secondary growth processes of their stems in order to support, orientate and explore their extensional growth into the environment. Currently, there is an increasing interest in developing models to describe plant growth and posture.
View Article and Find Full Text PDFWood performs several functions to ensure tree survival and carbon allocation to a finite stem volume leads to trade-offs among cell types. It is not known to what extent these trade-offs modify functional trade-offs and if they are consistent across climates and evolutionary lineages. Twelve wood traits were measured in stems and coarse roots across 60 adult angiosperm tree species from temperate, Mediterranean and tropical climates.
View Article and Find Full Text PDFWater stress can cause declines in plant function that persist after rehydration. Recent work has defined 'resilience' traits characterizing leaf resistance to persistent damage from drought, but whether these traits predict resilience in whole-plant function is unknown. It is also unknown whether the coordination between resilience and 'resistance' - the ability to maintain function during drought - observed globally occurs within ecosystems.
View Article and Find Full Text PDFEmbolism spreading in xylem is an important component of plant drought resistance. Since embolism resistance has been shown to be mechanistically linked to pit membrane characters in stem xylem, we speculate that similar mechanisms account for leaf xylem. We conducted transmission electron microscopy to investigate pit membrane characters in leaf xylem across 18 Neotropical tree species.
View Article and Find Full Text PDFA better knowledge of tree vegetative growth phenology and its relationship to environmental variables is crucial to understanding forest growth dynamics and how climate change may affect it. Less studied than reproductive structures, vegetative growth phenology focuses primarily on the analysis of growing shoots, from buds to leaf fall. In temperate regions, low winter temperatures impose a cessation of vegetative growth shoots and lead to a well-known annual growth cycle pattern for most species.
View Article and Find Full Text PDFThe leaf size-stem size spectrum is one of the main dimensions of plant ecological strategies. Yet the anatomical, mechanical, and hydraulic implications of small versus large shoots are still poorly understood. We investigated 42 tropical rainforest tree species in French Guiana, with a wide range of leaf areas at the shoot level.
View Article and Find Full Text PDFDrought-induced xylem embolism is considered to be one of the main factors driving mortality in woody plants worldwide. Although several structure-functional mechanisms have been tested to understand the anatomical determinants of embolism resistance, there is a need to study this topic by integrating anatomical data for many species. We combined optical, laser, and transmission electron microscopy to investigate vessel diameter, vessel grouping, and pit membrane ultrastructure for 26 tropical rainforest tree species across three major clades (magnoliids, rosiids, and asteriids).
View Article and Find Full Text PDFHydraulic segmentation at the stem-leaf transition predicts higher hydraulic resistance in leaves than in stems. Vulnerability segmentation, however, predicts lower embolism resistance in leaves. Both mechanisms should theoretically favour runaway embolism in leaves to preserve expensive organs such as stems, and should be tested for any potential coordination.
View Article and Find Full Text PDFAlthough the leaf economic spectrum has deepened our understanding of leaf trait variability, little is known about how leaf traits scale with leaf area. This uncertainty has resulted in the assumption that leaf traits should vary by keeping the same pace of variation with increases in leaf area across the leaf size range. We evaluated the scaling of morphological, tissue-surface and vascular traits with overall leaf area, and the functional significance of such scaling.
View Article and Find Full Text PDFSoil water and nutrient availability are key drivers of tree species distribution and forest ecosystem functioning, with strong species differences in water and nutrient use. Despite growing evidence for intraspecific trait differences, it remains unclear under which circumstances the effects of environmental gradients trump those of ontogeny and taxonomy on important functional dimensions related to resource use, particularly in tropical forests. Here, we explore how physiological, chemical, and morphological traits related to resource use vary between life stages in four species within the genus Micropholis that is widespread in lowland Amazonia.
View Article and Find Full Text PDFBackground: More than a half century ago, Shinozaki et al. (Shinozaki K, Yoda K, Hozumi K, Kira T. 1964a.
View Article and Find Full Text PDFForest successional processes following disturbance take decades to play out, even in tropical forests. Nonetheless, records of vegetation change in this ecosystem are scarce, increasing the importance of the chronosequence approach to study forest recovery. However, this approach requires accurate dating of secondary forests, which until now was a difficult and/or expensive task.
View Article and Find Full Text PDFPlant phenology is concerned with the timing of recurring biological events. Though phenology has traditionally been studied using intensive surveys of a local flora, results from such surveys are difficult to generalize to broader spatial scales. In this study, contrastingly, we assembled a continental-scale dataset of herbarium specimens for the emblematic genus of Neotropical pioneer trees, Cecropia, and applied Fourier spectral and cospectral analyses to investigate the reproductive phenology of 35 species.
View Article and Find Full Text PDFBackground And Aims: The distribution and differentiation times of flowers in monoecious wind-pollinated plants are fundamental for the understanding of their mating patterns and evolution. Two closely related South American Nothofagus species were compared with regard to the differentiation times and positions of staminate and pistillate flowers along their parent growth units (GUs) by quantitative means.
Methods: Two samples of GUs that had extended in the 2004-2005 growing season were taken in 2005 and 2006 from trees in the Lanín National Park, Patagonia, Argentina.
Cecropia species, ranging from Mexico to northern Argentina and the West Indies, are pioneer trees that colonize cleared areas with high light. To determine their ages to help pinpoint the date of the area's disturbance, we need to understand their developmental and architectural changes over time. The simple architecture of Cecropia conforms to the model of Rauh; that is, it has orthotropic axes with lateral flowering and rhythmic branching.
View Article and Find Full Text PDFThe aim of this study was to characterise changes in leaf shape prior to phyllode acquisition along the axes of Acacia mangium seedlings. The study area was located in North Lampung (South Sumatra, Indonesia), where these trees belong to a naturally regenerated stand. A total of 173 seedlings, less than three months old, were described node by node.
View Article and Find Full Text PDFObserved growth, as given, for instance, by the length of successive annual shoots along the main axis of a plant, is mainly the result of two components: an ontogenetic component and an environmental component. An open question is whether the ontogenetic component along an axis at the growth unit or annual shoot scale takes the form of a trend or of a succession of phases. Various methods of analysis ranging from exploratory analysis (symmetric smoothing filters, sample autocorrelation functions) to statistical modeling (multiple change-point models, hidden semi-Markov chains and hidden hybrid model combining Markovian and semi-Markovian states) are applied to extract and characterize both the ontogenetic and environmental components using contrasted examples.
View Article and Find Full Text PDFPhase change refers to the transition between juvenile and adult vegetative phases. The study of trees throughout their entire life span requires retrospective analyses and validates the use of a chronosequence by sequencing observations at different and successive stages. The main axis growth pattern of 62 maritime pines (Pinus pinaster) selected in a chronosequence of three stands consisting of 8-, 22-, and 48-yr-old trees was analyzed retrospectively.
View Article and Find Full Text PDF