Publications by authors named "Pascal Trouve"

Cystic fibrosis (CF) is a genetic disease due to mutations in the cystic fibrosis transmembrane conductance regulator () gene. The most frequent mutation (p.Phe508del) results in a misfolded protein (p.

View Article and Find Full Text PDF

Just over thirty years is the span of a generation. It is also the time that has passed since the discovery of the gene responsible for cystic fibrosis. Today, it is safe to say that this discovery has revolutionized our understanding, research perspectives, and management of this disease, which was, thirty years ago, a pediatric condition with a grim prognosis.

View Article and Find Full Text PDF
Article Synopsis
  • * The study focused on inhibiting the cleavage of the protein ATF6, which is linked to the p.Phe508del mutation, by targeting the protease MBTP1 in human bronchial cells.
  • * Results indicated that inhibiting MBTP1 enhances the expression of the defective p.Phe508del-CFTR and increases chloride efflux, likely due to the modulation of several related genes.
View Article and Find Full Text PDF

Disorders of the autosomal dominant polycystic kidney disease (ADPKD) spectrum are characterized by the development of kidney cysts and progressive kidney function decline. PKD1 and PKD2, encoding polycystin (PC)1 and 2, are the two major genes associated with ADPKD; other genes include IFT140, GANAB, DNAJB11, and ALG9. Genetic testing remains inconclusive in ∼7% of the families.

View Article and Find Full Text PDF

The aminopyrrolidine amide PF-429242 is a specific inhibitor of the Site-1 Protease which is responsible for the cleavage, and thus the activation of the Activating Transcription Factor6 that down regulates many genes, during the Unfolded Protein Response. We hypothesized that PF-429242 could be used to prevent the ATF6-dependent down regulation of some genes. We chose the CFTR gene encoding the CFTR chloride channel as a model because it is down-regulated by ATF6 in Cystic Fibrosis.

View Article and Find Full Text PDF

In cystic fibrosis (CF), p.Phe508del is the most frequent mutation in the Cystic Fibrosis Transmembrane conductance Regulator () gene. The p.

View Article and Find Full Text PDF

We previously reported a 40-transcripts signature marking the normal mucosa to colorectal adenocarcinoma transition. Eight of these mRNAs also showed splicing alterations, including a specific intron 3 retention in tissue metalloprotease inhibitor I (TIMP1), which decreased during the early steps of colorectal cancer progression. To decipher the mechanism of intron 3 retention/splicing, we first searched for putative RNA binding protein binding sites onto the TIMP1 sequence.

View Article and Find Full Text PDF

Summary: When analyzing sequence data, genetic variants are considered one by one, taking no account of whether or not they are found in the same individual. However, variant combinations might be key players in some diseases as variants that are neutral on their own can become deleterious when associated together. GEMPROT is a new analysis tool that allows, from a phased vcf file, to visualize the consequences of the genetic variants on the protein.

View Article and Find Full Text PDF

Cystic fibrosis (CF) is the most common autosomal recessive disease in Caucasians caused by mutations in the gene encoding the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) chloride (Cl-) channel regulated by protein kinases, phosphatases, divalent cations and by protein-protein interactions. Among protein-protein interactions, we previously showed that Annexin A5 (AnxA5) binds to CFTR and is involved in the channel localization within membranes and in its Cl- channel function. The deletion of phenylalanine at position 508 (F508del) is the most common mutation in CF which leads to an altered protein (F508del-CFTR) folding with a nascent protein retained within the ER and is quickly degraded.

View Article and Find Full Text PDF

Cystic Fibrosis is the most common lethal autosomal recessive disorder in the white population, affecting among other organs, the lung, the pancreas and the liver. Whereas Cystic Fibrosis is a monogenic disease, many studies reveal a very complex relationship between genotype and clinical phenotype. Indeed, the broad phenotypic spectrum observed in Cystic Fibrosis is far from being explained by obvious genotype-phenotype correlations and it is admitted that Cystic Fibrosis disease is the result of multiple factors, including effects of the environment as well as modifier genes.

View Article and Find Full Text PDF
Article Synopsis
  • Cystic Fibrosis (CF) is a common genetic disease in Caucasians caused by mutations in the CFTR gene, leading to faulty chloride channel proteins and related complications.
  • The most prevalent mutation, F508del-CFTR, disrupts protein folding and calcium homeostasis, causing the defective protein to accumulate in the endoplasmic reticulum (ER).
  • A study found that the calcium-binding protein Calumenin (CALU) is crucial for maintaining ER calcium levels and may help restore CFTR activity, suggesting that targeting Calumenin could be a promising strategy for CF treatment.
View Article and Find Full Text PDF

Cystic fibrosis results from mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-dependent protein kinase A (PKA) and ATP-regulated chloride channel. Here, we demonstrate that nucleoside diphosphate kinase B (NDPK-B, NM23-H2) forms a functional complex with CFTR. In airway epithelia forskolin/IBMX significantly increases NDPK-B co-localisation with CFTR whereas PKA inhibitors attenuate complex formation.

View Article and Find Full Text PDF

Cystic Fibrosis is due to mutations in the CFTR gene. The missense mutation G551D (approx. 5% of cases) encodes a CFTR chloride channel with normal cell surface expression but with an altered chloride channel activity, leading to a severe phenotype.

View Article and Find Full Text PDF

The cystic fibrosis transmembrane regulator (CFTR) is a cyclic-AMP dependent chloride channel expressed at the apical surface of epithelial cells lining various organs such as the respiratory tract. Defective processing and functioning of this protein caused by mutations in the CFTR gene results in loss of ionic balance, defective mucus clearance, increased proliferation of biofilms and inflammation of human airways observed in cystic fibrosis (CF) patients. The process by which CFTR folds and matures under the influence of various chaperones in the secretory pathway remains incompletely understood.

View Article and Find Full Text PDF

Cystic fibrosis (CF), the most common autosomal recessive disease in Caucasians, is due to mutations in the CFTR gene. F508del, the most frequent mutation in patients, impairs CFTR protein folding and biosynthesis. The F508del-CFTR protein is retained in the endoplasmic reticulum (ER) and its traffic to the plasma membrane is altered.

View Article and Find Full Text PDF

Inherited thrombocytopenia is a heterogeneous group of disorders characterized by a reduced number of blood platelets. Despite the identification of nearly 20 causative genes in the past decade, approximately half of all subjects with inherited thrombocytopenia still remain unexplained in terms of the underlying pathogenic mechanisms. Here we report a six-generation French pedigree with an autosomal dominant mode of inheritance and the identification of its genetic basis.

View Article and Find Full Text PDF

Cystic fibrosis (CF) is the most common lethal autosomal recessive disease in the Caucasian population. It is due to mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. To date, over 1910 mutations have been identified in the CFTR gene.

View Article and Find Full Text PDF

The level of circulating anxA5 is correlated to various diseases such as acute myocardial infarction, trauma, thrombosis, inflammation and in some cancers. Our aim was to assess whether a direct approach using surface plasmon resonance (SPR) could be easily used to provide a rapid and cheap alternative to detect anxA5 in blood samples in human. Our results indicate that SPR permits to detect and quantify circulating anxA5 in serum with a minimum time of manipulation.

View Article and Find Full Text PDF

In cystic fibrosis (CF), the most frequent mutant variant of the cystic fibrosis transmembrane conductance regulator (CFTR), F508del-CFTR protein, is misfolded and retained in the endoplasmic reticulum (ER). We previously showed that the unfolded protein response (UPR) may be triggered in CF. Since prolonged UPR activation leads to apoptosis via the calcium-calpain-caspase-12-caspase-3 cascade and because apoptosis is altered in CF, our aim was to compare the ER stress-induced apoptosis pathway between wild type (Wt) and F508del-CFTR expressing cells.

View Article and Find Full Text PDF

Cystic fibrosis (CF) is caused by a mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. In CF, the most common mutant DeltaF508-CFTR is misfolded, is retained in the ER and is rapidly degraded. If conditions could allow DeltaF508-CFTR to reach and to stabilize in the plasma membrane, it could partially correct the CF defect.

View Article and Find Full Text PDF

Cystic fibrosis (CF) is the most common Caucasian autosomal recessive disease. It is due to mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene encoding the CFTR protein, which is a chloride (Cl(-)) channel. The most common mutation leads to a missing phenylalanine at position 508 (DeltaF508).

View Article and Find Full Text PDF

The cystic fibrosis transmembrane conductance regulator (CFTR) functions as a cAMP-activated chloride channel, which is regulated by protein-protein interactions. The extent to which CFTR is regulated by these interactions remains unknown. Annexin V is overexpressed in cystic fibrosis (CF), and given the functional properties of annexin V and CFTR we considered whether they are associated and if so whether this has implications for CFTR function.

View Article and Find Full Text PDF

Variations in the SPINK1 gene (encoding pancreatic secretory trypsin inhibitor (PSTI)) are associated with chronic pancreatitis. We have recently determined the functional consequences of three missense mutations that occurred within the signal peptide sequence of PSTI by Western blotting analysis of wild-type and mutant PSTI expressed in Chinese hamster ovary cells. Here, this approach was extended to analyze seven missense mutations (p.

View Article and Find Full Text PDF

Objective: Left ventricle (LV) function was shown to be a principal determinant of morbidity and mortality in both uncorrected and surgically corrected mitral regurgitation (MR). However, the cellular mechanisms that develop in the LV remodeling secondary to volume overload in chronic severe MR is still not well defined. In single ventricular myocyte, a reduced contraction and slowed relaxation have been mainly attributed to defective intracellular Ca2+ currents.

View Article and Find Full Text PDF

Annexin A5 is a Ca2+ dependent phosphatidylserine binding protein mainly located in the T-tubules and sarcolemma of cardiomyocytes. Our objectives were to determine whether annexin A5 was associated with various protein(s) and whether such an association was modified in failing (F) hearts. The association between annexin A5 and the cardiac Na+/Ca2+ exchanger (NCX) was demonstrated by immunohistofluorescence, annexin A5-biotin overlay and co-immunoprecipitations (IPs) performed with microsomal preparations (MPs) from non-failing (NF) (n = 8) and F (dilated cardiomyopathy, n = 7) human hearts.

View Article and Find Full Text PDF