Adv Sci (Weinh)
February 2024
Ultramicroscopy
March 2023
Above a critical diameter, single- or few-walled carbon nanotubes spontaneously collapse as flattened carbon nanotubes. Raman spectra of isolated flattened and cylindrical carbon nanotubes have been recorded. The collapse provokes an intense and narrow D band, despite the absence of any lattice disorder.
View Article and Find Full Text PDFUsing a combination of experimental Raman, FTIR, UV-VIS absorption and emission data, together with the corresponding DFT calculations we propose the mechanism of modification of the folic acid specifically under the hydrothermal treatment at 200 °C. We established that folic acid breaks down into fragments while the pteridine moiety remains intact likely evolving into 6-formylpterin with the latter responsible for the increase in fluorescence emission at 450 nm. The results suggest that hydrothermal approach can be used for production of other purpose-engineered fluorophores.
View Article and Find Full Text PDFJ Colloid Interface Sci
March 2020
The development of cost-effective and highly-efficient electro-catalysts is essential for the advancement of proton exchange membrane fuel cells (PEMFC). We present a novel nitrogen-sulphur co-doped carbon nanotubes-few layer graphene1D-2D hybrid support formed by partially exfoliating multiwall carbon nanotubes (PECNT), to improve interface bonding to catalyst nanoparticles. Detailed Raman spectroscopy and STEM-EDS analyses demonstrate that active sites on the co-doped hybrid support ensure both uniform distribution and improved bonding of the catalyst nanoparticles to the support.
View Article and Find Full Text PDFThe original version of this article incorrectly listed the present address of Bo Wu as 'Present address: Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, Guangdong Province 510006, China'. This is the author's primary affiliation. This has been corrected in both the PDF and HTML versions of the article.
View Article and Find Full Text PDFNat Commun
January 2019
Halide perovskites possess enormous potential for various optoelectronic applications. Presently, a clear understanding of the interplay between the lattice and electronic effects is still elusive. Specifically, the weakly absorbing tail states and dual emission from perovskites are not satisfactorily described by existing theories based on the Urbach tail and reabsorption effect.
View Article and Find Full Text PDFThe room-temperature charge carrier mobility and excitation-emission properties of metal halide perovskites are governed by their electronic band structures and intrinsic lattice phonon scattering mechanisms. Establishing how charge carriers interact within this scenario will have far-reaching consequences for developing high-efficiency materials for optoelectronic applications. Herein we evaluate the charge carrier scattering properties and conduction band environment of the double perovskite CsAgBiBr via a combinatorial approach; single crystal X-ray diffraction, optical excitation and temperature-dependent emission spectroscopy, resonant and nonresonant Raman scattering, further supported by first-principles calculations.
View Article and Find Full Text PDFCuZnSnS (CZTS) shows great potential for photovoltaic application because of its non-toxic earth-abundant components and good optoelectronic properties. Combining low-cost and environmentally friendly routes would be the most favorable approach for the development of CZTS solar cells. In this context, development of CuZnSnS (CZTS) films from all-aqueous CZTS nanocrystals inks represents an interesting challenge.
View Article and Find Full Text PDFHighly aligned, packed, and doped carbon nanotube (CNT) fibers with electrical conductivities approaching that of copper have recently become available. These fibers are promising for high-power electrical applications that require light-weight, high current-carrying capacity cables. However, a microscopic understanding of how doping affects the electrical conductance of such CNT fibers in a quantitative manner has been lacking.
View Article and Find Full Text PDFPhys Chem Chem Phys
November 2015
The presence of polyiodide complexes have been reported several times when carbon-based materials were doped by iodine molecules, but their formation mechanism remains unclear. By using first-principles calculations that include nonlocal correlation effects by means of a van der Waals density functional approach, we propose that the formation of triiodide (I3(-)) and pentaiodide (I5(-)) is due to a large density of iodine molecules (I2) in interaction with a carbonaceous substrate. As soon as the concentration of surface iodine reaches a threshold value of 12.
View Article and Find Full Text PDFThe selective excitation of fullerenes encapsulated in single-walled carbon nanotubes (SWCNTs) is carried out by irradiating them using a UV laser, the wavelength of which corresponds exactly to their maximum of absorption. Under such conditions, fullerenes strongly absorb the laser energy, open, and break, while the containing SWCNT merely acts as both a nanoreactor and a mold which is only weakly heated by the laser. The containing tube confines the fullerene fragments, promotes their reconstruction into an inner tube, and protects them from air oxidation.
View Article and Find Full Text PDFThe potential impact of industrial multiwalled carbon nanotubes (MWNTs) was investigated under normalized laboratory conditions according to the International Standard micronucleus assay ISO 21427-1 for 12 days of half-static exposure to 0.1, 1, 10 and 50 mg/l of MWNTs in water. Three different end points were carried out for 12 days of exposure: mortality, growth inhibition and micronuclei induction in erythrocytes of the circulating blood of larvae.
View Article and Find Full Text PDFConsidering the important production of carbon nanotubes (CNTs), it is likely that some of them will contaminate the environment during each step of their life cycle. Nevertheless, there is little known about their potential ecotoxicity. Consequently, the impact of CNTs on the environment must be taken into consideration.
View Article and Find Full Text PDFBecause of their outstanding properties, carbon nanotubes (CNTs) are being assessed for inclusion in many manufactured products. Due to their massive production and growing number of potential applications, the impact of CNTs on the environment must be taken into consideration. The present investigation evaluates the ecotoxicological potential of double-walled carbon nanotubes (DWNTs) in the amphibian larvae Xenopus laevis at a large range of concentrations in water (from 10 to 500 mgL(-1)).
View Article and Find Full Text PDF