Due to increasing demand for salmon and environmental barriers preventing expansion in established sites, salmon farmers seek to move or expand their production to more exposed sites. In this study we investigate the effects of strong currents and waves on the behaviour of salmon and how they choose to use the space available to them. Observations are carried out in a site with strong tidal currents and well mixed water.
View Article and Find Full Text PDFDisease, pest control, and environmental factors such as water quality and carrying capacity limit growth of salmon production in existing farm areas. One way to circumvent such problems is to move production into more exposed locations with greater water exchange. Farming in exposed locations is better for the environment, but may carry unforeseen costs for the fish in those farms.
View Article and Find Full Text PDFMost Atlantic salmon mariculture operations use open sea cages for the grow out phase. The ultimate fate and effects of the effluents and the possibilities of disease transfer between fish farms are major concerns for farmers, governance and the general public alike. Numerical model systems applied to studying and managing effluents and disease transfer in mariculture must realistically resolve the hydrodynamics in the vicinity of the fish farms.
View Article and Find Full Text PDFPositioning of sea cages at sites with high water current velocities expose the fish to a largely unknown environmental challenge. In this study we observed the swimming behaviour of Atlantic salmon (Salmo salar L.) at a commercial farm with tidal currents altering between low, moderate and high velocities.
View Article and Find Full Text PDF