Cheese is one of the most consumed fermented animal-based products globally, rendering its quality assessment and evaluation of substantial economic interest. Understanding the degree of cheese homogeneity is paramount for designing effective sampling strategies, yet this information is largely lacking. This study investigates the homogeneity of a cheese wheel based on the distribution of volatile compounds, microbiota, sodium chloride content, and pH, combined with sensory analyses.
View Article and Find Full Text PDFSecondary electrospray ionization coupled to high-resolution mass spectrometry (SESI-HRMS) is a powerful method for the analysis of exhaled breath in real time. However, feature annotation is challenging due to the flow-injection nature of the technique. To evaluate alternative methods for enhancing feature annotation, a study was conducted where the exhaled breath of sixteen subjects was condensed and analyzed using dynamic headspace vacuum in-trap extraction gas chromatography-mass spectrometry (DHS-V-ITEX-GC-MS) and liquid chromatography coupled to mass spectrometry (LC-MS) using polar and reverse-phase conditions along with a data-independent MS-acquisition method based on multiple injections.
View Article and Find Full Text PDFUnraveling bacterial gene function drives progress in various areas, such as food production, pharmacology, and ecology. While omics technologies capture high-dimensional phenotypic data, linking them to genomic data is challenging, leaving 40-60% of bacterial genes undescribed. To address this bottleneck, we introduce Scoary2, an ultra-fast microbial genome-wide association studies (mGWAS) software.
View Article and Find Full Text PDFWe explored appropriate technical setups for the detection of volatile organic compounds (VOCs) from exhaled cow breath by comparing six different polymer-based solid-phase extraction (SPE) cartridges currently on the market for gas chromatography/mass spectrometry (GC-MS) screening. Exhaled breath was sampled at a single timepoint from five lactating dairy cows using six different SPE cartridges (Bond Elut ENV (ENV); Chromabond HRX (HRX); Chromabond HRP (HRP); Chromabond HLB (HLB); Chromabond HR-XCW (XCW) and Chromabond HR-XAW (XAW)). The trapped VOCs were analyzed by dynamic headspace vacuum in-tube extraction GC-MS (DHS-V-ITEX-GC-MS).
View Article and Find Full Text PDFNutritional biomarkers of dairy intake can be affected by both food transformation and the metabolic status of the consumer. To assess these effects, this study investigated the serum volatilome of 14 young (YA) and 14 older (OA) adult men undergoing a 3 week restriction of dairy and fermented foods followed by a randomized crossover acute intake of milk and yogurt. 3,5-Dimethyl-octan-2-one was identified as a potential marker of dairy product intake as its response after both milk and yogurt intake was significantly increased during the postprandial phase but significantly decreased in fasting serum samples of the OA group after the restriction phase.
View Article and Find Full Text PDFThe identification of molecular biomarkers that can be used to quantitatively link dietary intake to phenotypic traits in humans is a key theme in modern nutritional research. Although dairy products (with and without fermentation) represent a major food group, the identification of markers of their intake lags behind that of other food groups. Here, we report the results from an analysis of the metabolites in postprandial serum and urine samples from a randomized crossover study with 14 healthy men who ingested acidified milk, yogurt, and a non-dairy meal.
View Article and Find Full Text PDFA method based on dynamic headspace vacuum transfer in trap extraction, followed by gas chromatography coupled with a mass spectrometer (DHS-VTT-GC-MS), was validated for the fast quantitation of 1,4-dichlorobenzene (p-dichlorobenzene; PDCB) and thymol residues in beeswax. The quantitation limits (LOQ) were 0.05 mg/kg (PDCB) and 0.
View Article and Find Full Text PDFMicroorganisms
July 2022
Bacterial volatiles play important roles in mediating beneficial interactions between plants and their associated microbiota. Despite their relevance, bacterial volatiles are mostly studied under laboratory conditions, although these strongly differ from the natural environment bacteria encounter when colonizing plant roots or shoots. In this work, we ask the question whether plant-associated bacteria also emit bioactive volatiles when growing on plant leaves rather than on artificial media.
View Article and Find Full Text PDFUndefined starter cultures are poorly characterized bacterial communities from environmental origin used in cheese making. They are phenotypically stable and have evolved through domestication by repeated propagation in closed and highly controlled environments over centuries. This makes them interesting for understanding eco-evolutionary dynamics governing microbial communities.
View Article and Find Full Text PDFThis work aimed to determine the formation over time of 3-methylbutanal and 3-methylbutan-1-ol recognized as malty during the manufacture of Raclette-type cheese and the fermention of reconstituted skim milk, and filter-sterilized MRS broth. Using dynamic headspace-vacuum transfer in trap extraction followed by gas chromatography coupled with mass spectrometry-olfactometry (DHS-VTT-GC-MS-O) as a screening method for the malty compounds, five compounds (2-methylpropanal, 2- and 3-methylbutanal, and 2- and 3-methylbutan-1-ol) were identified as potential compounds causing the malty aroma in starter culture development and Raclette-type cheeses. Focus on compounds having a predominant sensorial effect (3-methylbutanal and 3-methylbutan-1-ol), spikings of leucine, C-labeled leucine, α-ketoisocaproic acid, and α-ketoglutaric acid provided a better understanding of their formation pathway.
View Article and Find Full Text PDFThe characterization of volatile compounds in biological fluids offers a distinct approach to study the metabolic imprint of foods on the human metabolome, particularly to identify novel biomarkers of food intake (BFIs) that are not captured by classic metabolomics. Using a combination of dynamic headspace vacuum transfer In Trap extraction and gas chromatography coupled with mass spectrometry, we measured volatile compounds (the "volatilome") in plasma and urine samples from a randomized controlled crossover intervention study in which 11 healthy subjects ingested milk, cheese, or a soy-based drink. More than 2000 volatile compounds were detected in plasma, while 1260 compounds were detected in urine samples.
View Article and Find Full Text PDFHeadspace in-tube extraction (HS-ITEX) and solid phase microextraction (HS-SPME) sampling, followed by gas chromatography-mass spectrometry (GC-MS), are widely used to analyze volatile compounds in various food matrices. While the extraction efficiency of volatile compounds from foodstuffs is crucial for obtaining relevant results, these efficiency of these extraction methods limited by their long extraction times and requirements for large sample quantity. This study reports on the development and application of a new extraction technique based on HS-ITEX hardware, which improves the extraction rate and capacity by operating under reduced pressure, called Dynamic Headspace Vacuum Transfer In-Trap Extraction (DHS-VTT).
View Article and Find Full Text PDFJ Agric Food Chem
September 2015
To establish the odor profiles of three differently fabricated commercial Swiss Tilsit cheeses, analyses were conducted using headspace solid-phase microextraction gas chromatography-mass spectrometry/pulsed flame photometric detection and gas chromatography-olfactometry to identify and quantitate volatile compounds. In addition, odor quality and the impact of target sulfur compounds on the overall odor of the cheeses were investigated. The odor profile was found to be mainly influenced by buttery-cheesy and sulfury odor notes in all cheeses.
View Article and Find Full Text PDF