Anion exchange membrane water electrolyzers (AEMWEs) offer a promising alternative to proton exchange membrane (PEM) electrolyzers, leveraging non-precious-metal catalysts and alkaline electrolytes for cost reduction. However, challenges persist in achieving long-term durability, high current densities, and stable membrane performance. While previous studies have examined AEM development, a comprehensive structural-electrochemical analysis of AEMWE components under prolonged operation remains limited.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2022
Poly(triazine imide) or PTI is an ordered graphitic carbon nitride hosting Å-scale pores attractive for selective molecular transport. AA'-stacked PTI layers are synthesized by ionothermal route during which ions occupy the framework and occlude the pores. Synthesis of ion-free PTI hosting AB-stacked layers has been reported, however, pores in this configuration are blocked by the neighboring layer.
View Article and Find Full Text PDFLead-free perovskites are attracting increasing interest as nontoxic materials for advanced optoelectronic applications. Here, we report on a family of silver/bismuth bromide double perovskites with lower dimensionality obtained by incorporating phenethylammonium (PEA) as an organic spacer, leading to the realization of two-dimensional double perovskites in the form of (PEA)AgBiBr ( = 1) and the first reported (PEA)CsAgBiBr ( = 2). In contrast to the situation prevailing in lead halide perovskites, we find a rather weak influence of electronic and dielectric confinement on the photophysics of the lead-free double perovskites, with both the 3D CsAgBiBr and the 2D = 1 and = 2 materials being dominated by strong excitonic effects.
View Article and Find Full Text PDFThe flexibility of the ZIF-8 aperture, which inhibits a molecular cutoff of 3.4 Å, can be reduced by rapid heat treatment to obtain CO-selective membranes. However, the early stages of the structural, morphological, and chemical changes responsible for the lattice rigidification remain elusive.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
June 2020
The hydroxide-exchange membrane fuel cell (HEMFC) is a promising energy conversion device. However, the development of HEMFC is hampered by the lack of platinum-group-metal-free (PGM-free) electrocatalysts for the hydrogen oxidation reaction (HOR). Now, a Ni catalyst is reported that exhibits the highest mass activity in HOR for a PGM-free catalyst as well as excellent activity in the hydrogen evolution reaction (HER).
View Article and Find Full Text PDFAlthough polycrystalline metal-organic framework (MOF) membranes offer several advantages over other nanoporous membranes, thus far they have not yielded good CO separation performance, crucial for energy-efficient carbon capture. ZIF-8, one of the most popular MOFs, has a crystallographically determined pore aperture of 0.34 nm, ideal for CO /N and CO /CH separation; however, its flexible lattice restricts the corresponding separation selectivities to below 5.
View Article and Find Full Text PDF