Aims: The study focused on the expression and role of a recent potential cancer therapeutic target protein, MutT Homolog1 (MTH1). MTH1 gets activated in an increased reactive oxygen species (ROS) environment and removes the oxidized nucleotides from the cell. The study aimed to check the role of MTH1 in DNA damage and apoptosis, migration and angiogenesis and also to examine its regulation in glioma.
View Article and Find Full Text PDFRecent studies suggest the role of autophagy, an evolutionarily conserved catabolic process, in determining the response of gliomas to treatment either positively or negatively. The study attempts to characterize autophagy in low and high-grade glioma by investigating the autophagic flux and clinical significance of autophagy proteins (LC3 and beclin 1) in a group of glioma patients. We evaluated the expression of autophagic markers in resected specimens of low-grade glioma (LGG) and high-grade glioma (HGG) tissues, by immunohistochemistry and Western blotting.
View Article and Find Full Text PDFThe strategy for interpreting the role of autophagy on the basis of evidence obtained through autophagic inhibition sounds logical, but is beset with practical constraints. The knock down of autophagy-related (ATG) gene(s) or blockage of class III PI3-Kinase are the most common approaches for inhibiting autophagy. However, during stressful conditions, autophagy may operate in synchrony with other processes such as apoptosis; autophagy-related genes, unlike what their name implies, exert their regulation on apoptosis as well.
View Article and Find Full Text PDF