Publications by authors named "Owen Kantelberg"

Article Synopsis
  • Protein misfolding and aggregation into complex structures are common in neurodegenerative diseases, affecting conditions like Parkinson's.
  • Single-molecule techniques have improved the study of these rare protein aggregates, but they often require tagged proteins or non-specific dyes.
  • The researchers developed a method using high-affinity antibodies and advanced microscopy to specifically detect α-synuclein aggregates in low concentrations within biological samples.
View Article and Find Full Text PDF
Article Synopsis
  • Amyotrophic Lateral Sclerosis (ALS) involves the loss of motor neurons, which may be linked to changes in synapses related to TDP-43 protein issues.
  • The study used advanced microscopy techniques to investigate the presence and distribution of pTDP-43 in excitatory synapses in the spinal cord of mice.
  • Findings showed that pTDP-43 is present in about half of spinal cord synapses, primarily concentrated in those connected to VGLUT1 presynaptic terminals, and there was no observable difference in its expression between ALS-afflicted mice and healthy controls.
View Article and Find Full Text PDF
Article Synopsis
  • Protein misfolding and aggregation into structures like oligomers and fibrils are linked to various neurodegenerative diseases.
  • Traditional methods for studying these aggregates often lack specificity and rely on labeled proteins or non-specific stains.
  • The researchers developed a new technique using a high-affinity antibody with unique fluorophores and advanced microscopy to specifically identify and analyze α-synuclein aggregates in low concentrations, relevant to biological samples.
View Article and Find Full Text PDF

Neurodegenerative diseases such as Parkinson's disease (PD), Alzheimer's disease (AD), and amyotrophic lateral sclerosis (ALS) are traditionally considered strictly neurological disorders. However, clinical presentation is not restricted to neurological systems, and non-central nervous system (CNS) manifestations, particularly gastrointestinal (GI) symptoms, are common. Our objective was to understand the systemic distribution of pathology in archived non-CNS tissues, taken as part of routine clinical practice during life from people with ALS.

View Article and Find Full Text PDF

Aptamers are artificial oligonucleotides binding to specific molecular targets. They have a promising role in therapeutics and diagnostics but are often difficult to design. Here, we exploited the catRAPID algorithm to generate aptamers targeting TAR DNA-binding protein 43 (TDP-43), whose aggregation is associated with Amyotrophic Lateral Sclerosis.

View Article and Find Full Text PDF

We present LIVE-PAINT, a new approach to super-resolution fluorescent imaging inside live cells. In LIVE-PAINT only a short peptide sequence is fused to the protein being studied, unlike conventional super-resolution methods, which rely on directly fusing the biomolecule of interest to a large fluorescent protein, organic fluorophore, or oligonucleotide. LIVE-PAINT works by observing the blinking of localized fluorescence as this peptide is reversibly bound by a protein that is fused to a fluorescent protein.

View Article and Find Full Text PDF