Publications by authors named "Orsola Rosa-Salva"

Shortly after birth, both naïve animals and newborn babies exhibit a spontaneous attraction to faces and face-like stimuli. While neurons selectively responding to faces have been found in the inferotemporal cortex of adult primates, face-selective domains in the brains of young monkeys seem to develop only later in life after exposure to faces. This has fueled a debate on the role of experience in the development of face-detector mechanisms, since face preferences are well documented in naïve animals, such as domestic chicks reared without exposure to faces.

View Article and Find Full Text PDF

Sensory stimulation during the prenatal period has been argued to be a main factor in establishing asymmetry in the vertebrate brain. However, though largely studied in behavior and neuroanatomy, nothing is known on the effects of light stimulation in embryo on the activities of single neurons. We performed single-unit recordings from the left and right entopallium of dark- and light-incubated chicks, following ipsi-, contra-, and bilateral visual stimulation.

View Article and Find Full Text PDF

Animals can use different types of information for navigation. Domestic chicks (Gallus gallus) prefer to use local features as a beacon over spatial relational information. However, the role of egocentric navigation strategies is less understood.

View Article and Find Full Text PDF

Domestic chicks (Gallus gallus domesticus) have been widely used as a model to study the motion cues that allow visually naïve organisms to detect animate agents shortly after hatching/birth. Our previous work has shown that chicks prefer to approach agents whose main body axis and motion direction are aligned (a feature typical of creatures whose motion is constrained by a bilaterally symmetric body plan). However, it has never been investigated whether chicks are also sensitive to the fact that an agent maintains a stable front-back body orientation in motion (i.

View Article and Find Full Text PDF

The ability to recognize animate agents based on their motion has been investigated in humans and animals alike. When the movements of multiple objects are interdependent, humans perceive the presence of social interactions and goal-directed behaviours. Here, we investigated how visually naive domestic chicks respond to agents whose motion was reciprocally contingent in space and time (i.

View Article and Find Full Text PDF

While zebrafish represent an important model for the study of the visual system, visual perception in this species is still less investigated than in other teleost fish. In this work, we validated for zebrafish two versions of a visual discrimination learning task, which is based on the motivation to reach food and companions. Using this task, we investigated zebrafish ability to discriminate between two different shape pairs (i.

View Article and Find Full Text PDF

Faces convey a great amount of socially relevant information related to emotional and mental states, identity and intention. Processing of face information is a key mechanism for social and cognitive development, such that newborn babies are already tuned to recognize and orient to faces and simple schematic face-like patterns since the first hours of life. Similar to neonates, also non-human primates and domestic chicks have been shown to express orienting responses to faces and schematic face-like patterns.

View Article and Find Full Text PDF

Brain and behavioural asymmetries have been documented in various taxa. Many of these asymmetries involve preferential left and right eye use. However, measuring eye use through manual frame-by-frame analyses from video recordings is laborious and may lead to biases.

View Article and Find Full Text PDF

Despite an increasing interest in detecting early signs of Autism Spectrum Disorders (ASD), the pathogenesis of the social impairments characterizing ASD is still largely unknown. Atypical visual attention to social stimuli is a potential early marker of the social and communicative deficits of ASD. Some authors hypothesized that such impairments are present from birth, leading to a decline in the subsequent typical functioning of the learning-mechanisms.

View Article and Find Full Text PDF

Since the ground-breaking discovery that in-egg light exposure triggers the emergence of visual lateralisation, domestic chicks became a crucial model for research on the interaction of environmental and genetic influences for brain development. In domestic chick embryos, light exposure induces neuroanatomical asymmetries in the strength of visual projections from the thalamus to the visual Wulst. Consequently, the right visual Wulst receives more bilateral information from the two eyes than the left one.

View Article and Find Full Text PDF

The discovery of the role of light exposure for the development of lateralization in domestic chick embryos revolutionized this research field. However, two main issues remain unresolved: (i) while in chicks anatomical light-dependent lateralization is mostly confined to the thalamofugal visual pathway, in pigeons only the tectofugal pathway is lateralized after light exposure. However, no study in either species ever investigated anatomical lateralization in the entopallium, the forebrain station of the tectofugal pathway.

View Article and Find Full Text PDF

We analysed research that makes use of precocial species as animal models to describe the interaction of predisposed mechanisms and environmental factors in early learning, in particular for the development of social cognition. We also highlight the role of sensitive periods in this interaction, focusing on domestic chicks as one of the main animal models for this field. In the first section of the review, we focus on the emergence of early predispositions to attend to social partners.

View Article and Find Full Text PDF

Domestic chickens are able to distinguish familiar from unfamiliar conspecifics, however the neuronal mechanisms mediating this behaviour are almost unknown. Moreover, the lateralisation of chicks' social recognition has only been investigated at the behavioural level, but not at the neural level. The aim of the present study was to test the hypothesis that exposure to unfamiliar conspecifics will selectively activate septum, hippocampus or nucleus taeniae of the amygdala of young domestic chicks.

View Article and Find Full Text PDF

Statistical learning is a key mechanism for detecting regularities from a variety of sensory inputs. Precocial newborn domestic chicks provide an excellent model for (1) exploring unsupervised forms of statistical learning in a comparative perspective, and (2) elucidating the ecological function of statistical learning using imprinting procedures. Here we investigated the role of the sex of the chicks in modulating the direction of preference (for familiarity or novelty) in a visual statistical learning task already employed with chicks and human infants.

View Article and Find Full Text PDF

Unlearned tendencies to approach animate creatures are of great adaptive value, especially for nidifugous social birds that need to react to the presence of potential social companions shortly after hatching. Domestic chicks' preferences for taxidermized hens provided the first evidence of social predispositions. However, the nature of the stimuli eliciting this predisposition is not completely understood.

View Article and Find Full Text PDF

The detection of animate beings at the onset of life is important for phylogenetically distant species, such as birds and primates. Naïve chicks preferentially approach a stimulus resembling a conspecific (a stuffed fowl) over a less naturalistic one (a scrambled version of the stuffed fowl, presenting the same low-level visual features as the fowl in an unnatural configuration). The neuronal mechanisms underlying this behavior are mostly unknown.

View Article and Find Full Text PDF

Early predispositions to preferentially orient toward cues associated with social partners have been documented in several vertebrate species including human neonates and domestic chicks. Human newborns at high familiar risk of Autism Spectrum Disorder (ASD) show differences in their attention toward these predisposed stimuli, suggesting potential impairments in the social-orienting mechanisms in ASD. Using embryonic exposure to valproic acid (VPA) we modeled ASD behavioral deficits in domestic chicks.

View Article and Find Full Text PDF

Exposure of domestic chicks' eggs to light during embryo incubation stimulates asymmetrically the two eye-systems, reaching selectively the right eye (left hemisphere) and inducing asymmetries at the behavioral and neural level. Surprisingly, though, some types of lateralization have been observed also in dark incubated chicks, especially at the behavioral level. Here we investigate the mechanisms subtending the development of lateralization, in the presence and in the absence of embryonic light exposure.

View Article and Find Full Text PDF

Effective communication crucially depends on the ability to produce and recognize structured signals, as apparent in language and birdsong. Although it is not clear to what extent similar syntactic-like abilities can be identified in other animals, recently we reported that domestic chicks can learn abstract visual patterns and the statistical structure defined by a temporal sequence of visual shapes. However, little is known about chicks' ability to process spatial/positional information from visual configurations.

View Article and Find Full Text PDF

Biological predispositions to attend to visual cues, such as those associated with face-like stimuli or with biological motion, guide social behavior from the first moments of life and have been documented in human neonates, infant monkeys and domestic chicks. Impairments of social predispositions have been recently reported in neonates at high familial risk of Autism Spectrum Disorder (ASD). Using embryonic exposure to valproic acid (VPA), an anticonvulsant associated to increased risk of developing ASD, we modeled ASD behavioral deficits in domestic chicks.

View Article and Find Full Text PDF

The septum is an evolutionarily well-conserved part of the limbic system. It is known to be involved in many aspects of social behavior and is considered a key node of the social behavior network, together with the preoptic area. Involvement of these two brain regions has been recently observed in newly hatched chicks exposed to the natural motion of a living conspecific.

View Article and Find Full Text PDF

The ability to extract probabilistic information from visual inputs has been reported in human adults and infants (reviewed in [1,2]), and in adults of non-human species, though only under supervised (conditioning) procedures [3]. Here, we report spontaneous sensitivity to the probabilistic structure underlying sequences of visual stimuli in newly hatched domestic chicks using filial imprinting, suggesting that statistical learning may be fully operating at the onset of life in precocial avian species.

View Article and Find Full Text PDF

Predispositions to attend to animate objects are ubiquitous in newborn vertebrates, but little is known about their neural bases. In this study, we wanted to know if exposure to the motion of a living, behaving conspecific will selectively activate septal, preoptic and amygdaloid areas in visually naive domestic chicks. For this purpose, newly hatched chicks were exposed to a live conspecific, whose natural motion presents of course several features typical of animate motion to which chicks are known to be sensitive.

View Article and Find Full Text PDF

The septal nuclei are an evolutionarily well-conserved part of the limbic system, present in all vertebrate groups. Functionally, septal nuclei are involved in many important aspects of social behavior and lateral septum is considered a node of the social decision making network, together with amygdaloid nuclei. Given the importance of septal nuclei for social behaviors, it is somewhat surprising that it has never been investigated whether they are involved in early social responses of naïve animals.

View Article and Find Full Text PDF

To what extent are filial responses the outcome of spontaneous or acquired preferences? The case of domestic chicks illustrates the connection between predisposed and learned knowledge in early social responses. In the absence of specific experience, chicks prefer to approach objects that are more similar to natural social partners (e.g.

View Article and Find Full Text PDF