Publications by authors named "Omid Gharibi"

Background: Thyroid diseases are the second most common hormonal disorders, necessitating accurate diagnostics. Advances in artificial intelligence and radiomics have enhanced diagnostic precision by analyzing quantitative imaging features. However, reproducibility challenges arising from factors such as the field-of-view (FOV) zooming and segmentation variability limit the clinical application of radiomic-based models.

View Article and Find Full Text PDF

Background: Myocardial perfusion imaging (MPI) using single-photon emission computed tomography (SPECT) is a well-established modality for noninvasive diagnostic assessment of coronary artery disease (CAD). However, the time-consuming and experience-dependent visual interpretation of SPECT images remains a limitation in the clinic.

Purpose: We aimed to develop advanced models to diagnose CAD using different supervised and semi-supervised deep learning (DL) algorithms and training strategies, including transfer learning and data augmentation, with SPECT-MPI and invasive coronary angiography (ICA) as standard of reference.

View Article and Find Full Text PDF

Background: Coronary artery disease (CAD) has one of the highest mortality rates in humans worldwide. Single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) provides clinicians with myocardial metabolic information non-invasively. However, there are some limitations to interpreting SPECT images performed by physicians or automatic quantitative approaches.

View Article and Find Full Text PDF

This study intends to predict in-hospital and 6-month mortality, as well as 30-day and 90-day hospital readmission, using Machine Learning (ML) approach via conventional features. A total of 737 patients remained after applying the exclusion criteria to 1101 heart failure patients. Thirty-four conventional features were collected for each patient.

View Article and Find Full Text PDF