Publications by authors named "Omar N Demerdash"

Carbon dioxide (CO) is a detrimental greenhouse gas and is the main contributor to global warming. In addressing this environmental challenge, a promising approach emerges through the utilization of deep eutectic solvents (DESs) as an ecofriendly and sustainable medium for effective CO capture. Chemically reactive DESs, which form chemical bonds with the CO, are superior to nonreactive, physically based DESs for CO absorption.

View Article and Find Full Text PDF

Deep eutectic solvents (DESs) are emerging as environmentally friendly designer solvents for mass transport and heat transfer processes in industrial applications; however, the lack of accurate tools to predict and thus control their viscosities under both a range of environmental factors and formulations hinders their general application. While DESs may serve as designer solvents, with nearly unlimited combinations, this unfortunately makes it experimentally infeasible to comprehensively measure the viscosities of all DESs of potential industrial interest. To assist in the design of DESs, we have developed several new machine learning (ML) models that accurately and rapidly predict the viscosities of a diverse group of DESs at different temperatures and molar ratios using, to date, one of the most comprehensive data sets containing the properties of over 670 DESs over a wide range of temperatures (278.

View Article and Find Full Text PDF

Human myeloid-derived growth factor (hMYDGF) is a 142-residue protein with a C-terminal endoplasmic reticulum (ER) retention sequence (ERS). Extracellular MYDGF mediates cardiac repair in mice after anoxic injury. Although homologs of hMYDGF are found in eukaryotes as distant as protozoans, its structure and function are unknown.

View Article and Find Full Text PDF

In this work, we have developed an anisotropic polarizable model for the AMOEBA force field that is derived from electrostatic fitting on a gas phase water molecule as the primary approach to improve the many-body polarization model. We validate our approach using small to large water cluster benchmark data sets and ambient liquid water properties and through comparisons to a variational energy decomposition analysis breakdown of molecular interactions for water and water-ion trimer systems. We find that the accounting of anisotropy polarization for a single water molecule demonstrably improves the description of the many-body polarization energy in all cases.

View Article and Find Full Text PDF

Advanced potential energy surfaces are defined as theoretical models that explicitly include many-body effects that transcend the standard fixed-charge, pairwise-additive paradigm typically used in molecular simulation. However, several factors relating to their software implementation have precluded their widespread use in condensed-phase simulations: the computational cost of the theoretical models, a paucity of approximate models and algorithmic improvements that can ameliorate their cost, underdeveloped interfaces and limited dissemination in computational code bases that are widely used in the computational chemistry community, and software implementations that have not kept pace with modern high-performance computing (HPC) architectures, such as multicore CPUs and modern graphics processing units (GPUs). In this Feature Article we review recent progress made in these areas, including well-defined polarization approximations and new multipole electrostatic formulations, novel methods for solving the mutual polarization equations and increasing the MD time step, combining linear-scaling electronic structure methods with new QM/MM methods that account for mutual polarization between the two regions, and the greatly improved software deployment of these models and methods onto GPU and CPU hardware platforms.

View Article and Find Full Text PDF

Many proteins have small-molecule binding pockets that are not easily detectable in the ligand-free structures. These cryptic sites require a conformational change to become apparent; a cryptic site can therefore be defined as a site that forms a pocket in a holo structure, but not in the apo structure. Because many proteins appear to lack druggable pockets, understanding and accurately identifying cryptic sites could expand the set of drug targets.

View Article and Find Full Text PDF

We describe methods and results for four new types of challenge in the Critical Assessment of PRedicted Interactions (CAPRI). Two new challenges asked predictors to create models related to protein interface design. The first of these was to distinguish binding interfaces from designed nonbinding interfaces.

View Article and Find Full Text PDF

Community-wide blind prediction experiments such as CAPRI and CASP provide an objective measure of the current state of predictive methodology. Here we describe a community-wide assessment of methods to predict the effects of mutations on protein-protein interactions. Twenty-two groups predicted the effects of comprehensive saturation mutagenesis for two designed influenza hemagglutinin binders and the results were compared with experimental yeast display enrichment data obtained using deep sequencing.

View Article and Find Full Text PDF

Protein-protein interactions are a fundamental aspect of many biological processes. The advent of recombinant protein and computational techniques has allowed for the rational design of proteins with novel binding capabilities. It is therefore desirable to predict which designed proteins are capable of binding in vitro.

View Article and Find Full Text PDF

Normal mode analysis has emerged as a useful technique for investigating protein motions on long time scales. This is largely due to the advent of coarse-graining techniques, particularly Hooke's Law-based potentials and the rotational-translational blocking (RTB) method for reducing the size of the force-constant matrix, the Hessian. Here we present a new method for domain decomposition for use in RTB that is based on hierarchical clustering of atomic density gradients, which we call Density-Cluster RTB (DCRTB).

View Article and Find Full Text PDF

The CAPRI (Critical Assessment of Predicted Interactions) and CASP (Critical Assessment of protein Structure Prediction) experiments have demonstrated the power of community-wide tests of methodology in assessing the current state of the art and spurring progress in the very challenging areas of protein docking and structure prediction. We sought to bring the power of community-wide experiments to bear on a very challenging protein design problem that provides a complementary but equally fundamental test of current understanding of protein-binding thermodynamics. We have generated a number of designed protein-protein interfaces with very favorable computed binding energies but which do not appear to be formed in experiments, suggesting that there may be important physical chemistry missing in the energy calculations.

View Article and Find Full Text PDF

Neurons and glial cells in the developing brain arise from neural progenitor cells (NPCs). Nestin, an intermediate filament protein, is thought to be expressed exclusively by NPCs in the normal brain, and is replaced by the expression of proteins specific for neurons or glia in differentiated cells. Nestin expressing NPCs are found in the adult brain in the subventricular zone (SVZ) of the lateral ventricle and the subgranular zone (SGZ) of the dentate gyrus.

View Article and Find Full Text PDF

We present a computationally efficient method for flexible refinement of docking predictions that reflects observed motions within a protein's structural class. Using structural homologs, we derive deformation models that capture likely motions. The models or "replicates" typically align along a rigid core, with a handful of flexible loops, linkers and tails.

View Article and Find Full Text PDF

In allostery, a binding event at one site in a protein modulates the behavior of a distant site. Identifying residues that relay the signal between sites remains a challenge. We have developed predictive models using support-vector machines, a widely used machine-learning method.

View Article and Find Full Text PDF