J Control Release
October 2021
Drug delivery to the brain is limited for most pharmaceuticals by the blood-brain barrier (BBB) where claudin-5 dominates the paraendothelial tightening. For circumventing the BBB, we identified the compound M01 as a claudin-5 interaction inhibitor. M01 causes transient permeabilisation of the BBB depending on the concentration of small molecules in different cell culture models within 3 to 48 h.
View Article and Find Full Text PDFThe outcome of stroke is greatly influenced by the state of the blood-brain barrier (BBB). The BBB endothelium is sealed paracellularly by tight junction (TJ) proteins, i.e.
View Article and Find Full Text PDFCell Mol Life Sci
May 2019
At the blood-brain barrier (BBB), claudin (Cldn)-5 is thought to be the dominant tight junction (TJ) protein, with minor contributions from Cldn3 and -12, and occludin. However, the BBB appears ultrastructurally normal in Cldn5 knock-out mice, suggesting that further Cldns and/or TJ-associated marvel proteins (TAMPs) are involved. Microdissected human and murine brain capillaries, quickly frozen to recapitulate the in vivo situation, showed high transcript expression of Cldn5, -11, -12, and -25, and occludin, but also abundant levels of Cldn1 and -27 in man.
View Article and Find Full Text PDFBackground: Sulf1 is a cell-surface sulfatase removing internal 6-O-sulfate groups from heparan sulfate (HS) chains. Thereby it modulates the activity of HS-dependent growth factors. For HS interaction Sulf1 employs a unique hydrophilic domain (HD).
View Article and Find Full Text PDF