Publications by authors named "Odile Heidmann"

Human endogenous retroviruses represent approximately 8% of our genome. Most of these sequences are defective except for a few genes such as the ancestral retroviral HEMO envelope gene (Human Endogenous MER34 ORF), recently characterized by our group. In this study, we characterized transcriptional activation of HEMO in primary tumors from The Cancer Genome Atlas (TCGA) and in metastatic tumors from a Gustave Roussy cohort.

View Article and Find Full Text PDF

Capture of retroviral envelope genes from endogenous retroviruses has played a role in the evolution of mammals, with evidence for the involvement of these genes in the formation of the maternofetal interface of the placenta. It has been shown that the diversity of captured genes is likely to be responsible for the diversity of placental structures, ranging from poorly invasive (epitheliochorial) to highly invasive (hemochorial), with an intermediate state (endotheliochorial) as found in carnivorans. The latter recapitulate part of this evolution, with the hyena being the sole carnivoran with a hemochorial placenta.

View Article and Find Full Text PDF
Article Synopsis
  • - Syncytins are genes derived from retroviruses that have evolved to play a crucial role in the formation of the placenta in mammals and some other vertebrates, including certain lizards.
  • - A new syncytin gene was identified through RNA sequencing, showing characteristics typical of syncytins, such as encoding a membrane protein that aids in cell fusion, and was found to be conserved across species over a long evolutionary period.
  • - The research indicates that the use of syncytins for placentation is not exclusive to mammals, highlighting a shared evolutionary mechanism for placental development in both mammals and certain nonmammalian species.
View Article and Find Full Text PDF

Capture of retroviral envelope genes is likely to have played a role in the emergence of placental mammals, with evidence for multiple, reiterated, and independent capture events occurring in mammals, and be responsible for the diversity of present day placental structures. Here, we uncover a full-length endogenous retrovirus envelope protein, dubbed HEMO [human endogenous MER34 (medium-reiteration-frequency-family-34) ORF], with unprecedented characteristics, because it is actively shed in the blood circulation in humans via specific cleavage of the precursor envelope protein upstream of the transmembrane domain. At variance with previously identified retroviral envelope genes, its encoding gene is found to be transcribed from a unique CpG-rich promoter not related to a retroviral LTR, with sites of expression including the placenta as well as other tissues and rather unexpectedly, stem cells as well as reprogrammed induced pluripotent stem cells (iPSCs), where the protein can also be detected.

View Article and Find Full Text PDF

Unlabelled: Retroviruses enter host cells through the interaction of their envelope (Env) protein with a cell surface receptor, which triggers the fusion of viral and cellular membranes. The sodium-dependent neutral amino acid transporter ASCT2 is the common receptor of the large RD114 retrovirus interference group, whose members display frequent env recombination events. Germ line retrovirus infections have led to numerous inherited endogenous retroviruses (ERVs) in vertebrate genomes, which provide useful insights into the coevolutionary history of retroviruses and their hosts.

View Article and Find Full Text PDF

Syncytins are genes of retroviral origin captured by eutherian mammals, with a role in placentation. Here we show that some marsupials-which are the closest living relatives to eutherian mammals, although they diverged from the latter ∼190 Mya-also possess a syncytin gene. The gene identified in the South American marsupial opossum and dubbed syncytin-Opo1 has all of the characteristic features of a bona fide syncytin gene: It is fusogenic in an ex vivo cell-cell fusion assay; it is specifically expressed in the short-lived placenta at the level of the syncytial feto-maternal interface; and it is conserved in a functional state in a series of Monodelphis species.

View Article and Find Full Text PDF

Syncytins are fusogenic envelope (env) genes of retroviral origin that have been captured for a function in placentation. Syncytins have been identified in Euarchontoglires (primates, rodents, Leporidae) and Laurasiatheria (Carnivora, ruminants) placental mammals. Here, we searched for similar genes in species that retained characteristic features of primitive mammals, namely the Malagasy and mainland African Tenrecidae.

View Article and Find Full Text PDF
Article Synopsis
  • Syncytin genes are proteins derived from retroviruses that play a crucial role in placenta formation, with two already found in the mouse lineage.
  • Researchers explored the squirrel-related rodent clade and discovered a new syncytin gene, named syncytin-Mar1, through genomic analysis of ground squirrels.
  • This gene exhibits specific expression in the placenta and is crucial for cell fusion processes, indicating its significant role in placentation evolution, dating back at least 25 million years.
View Article and Find Full Text PDF

The development of the emerging field of 'paleovirology' allows biologists to reconstruct the evolutionary history of fossil endogenous retroviral sequences integrated within the genome of living organisms and has led to the retrieval of conserved, ancient retroviral genes 'exapted' by ancestral hosts to fulfil essential physiological roles, syncytin genes being undoubtedly among the most remarkable examples of such a phenomenon. Indeed, syncytins are 'new' genes encoding proteins derived from the envelope protein of endogenous retroviral elements that have been captured and domesticated on multiple occasions and independently in diverse mammalian species, through a process of convergent evolution. Knockout of syncytin genes in mice provided evidence for their absolute requirement for placenta development and embryo survival, via formation by cell-cell fusion of syncytial cell layers at the fetal-maternal interface.

View Article and Find Full Text PDF

Syncytins are envelope genes of retroviral origin that have been co-opted for a role in placentation. They promote cell-cell fusion and are involved in the formation of a syncytium layer--the syncytiotrophoblast--at the materno-fetal interface. They were captured independently in eutherian mammals, and knockout mice demonstrated that they are absolutely required for placenta formation and embryo survival.

View Article and Find Full Text PDF

Syncytins are envelope genes of retroviral origin that have been co-opted for a role in placentation and likely contribute to the remarkable diversity of placental structures. Independent capture events have been identified in primates, rodents, lagomorphs, and carnivores, where they are involved in the formation of a syncytium layer at the fetomaternal interface via trophoblast cell-cell fusion. We searched for similar genes within the suborder Ruminantia where the placenta lacks an extended syncytium layer but displays a heterologous cell-fusion process unique among eutherian mammals.

View Article and Find Full Text PDF

Syncytins are envelope protein genes of retroviral origin that have been captured for a function in placentation. Two such genes have already been identified in simians, two distinct, unrelated genes have been identified in Muridae, and a fifth gene has been identified in the rabbit. Here, we searched for similar genes in the Laurasiatheria clade, which diverged from Euarchontoglires--primates, rodents, and lagomorphs--shortly after mammalian radiation (100 Mya).

View Article and Find Full Text PDF

Background: Syncytins are envelope genes of retroviral origin that have been co-opted by the host to mediate a specialized function in placentation. Two of these genes have already been identified in primates, as well as two distinct, non orthologous genes in rodents.

Results: Here we identified within the rabbit Oryctolagus cuniculus-which belongs to the lagomorpha order- an envelope (env) gene of retroviral origin with the characteristic features of a bona fide syncytin, that we named syncytin-Ory1.

View Article and Find Full Text PDF

Background: APOBEC3 cytosine deaminases have been demonstrated to restrict infectivity of a series of retroviruses, with different efficiencies depending on the retrovirus. In addition, APOBEC3 proteins can severely restrict the intracellular transposition of a series of retroelements with a strictly intracellular life cycle, including the murine IAP and MusD LTR-retrotransposons.

Results: Here we show that the IAPE element, which is the infectious progenitor of the strictly intracellular IAP elements, and the infectious human endogenous retrovirus HERV-K are restricted by both murine and human APOBEC3 proteins in an ex vivo assay for infectivity, with evidence in most cases of strand-specific G-to-A editing of the proviruses, with the expected signatures.

View Article and Find Full Text PDF

We have previously demonstrated that the envelope proteins of a murine and primate retrovirus are immunosuppressive in vivo. This property was manifested by the ability of the proteins, when expressed by allogeneic tumor cells normally rejected by engrafted mice, to have the env-expressing cells escape (at least transiently) immune rejection. Here, we analyzed the immunosuppressive activity of the human and murine syncytins.

View Article and Find Full Text PDF

Viruslike particles which displayed a peculiar wheellike appearance that distinguished them from A-, B- or C-type particles had previously been described in the early mouse embryo. The maximum expression of these so-called epsilon particles was observed in two-cell-stage embryos, followed by their rapid decline at later stages of development and no particles detected at the zygote one-cell stage. Here, we show that these particles are in fact produced by a newly discovered murine endogenous retrovirus (ERV) belonging to the widespread family of mammalian ERV-L elements and named MuERV-L.

View Article and Find Full Text PDF

Endogenous retroviruses are multicopy retroelements accounting for nearly 10% of murine or human genomes. These retroelements spread into our ancestral genome millions of years ago and have acted as a driving force for genome evolution. Endogenous retroviruses may also be deleterious for their host, and have been implicated in cancers and autoimmune diseases.

View Article and Find Full Text PDF