Background: The evolution of central nervous systems (CNSs) is a fascinating and complex topic; further work is needed to understand the genetic and developmental homology between organisms with a CNS. Research into a limited number of species suggests that CNSs may be homologous across Bilateria. This hypothesis is based in part on similar functions of BMP signaling in establishing fates along the dorsal-ventral (D-V) axis, including limiting neural specification to one ectodermal region.
View Article and Find Full Text PDFThe mechanisms regulating nervous system development are still unknown for a wide variety of taxa. In insects and vertebrates, bone morphogenetic protein (BMP) signaling plays a key role in establishing the dorsal-ventral (D-V) axis and limiting the neuroectoderm to one side of that axis, leading to speculation about the conserved evolution of centralized nervous systems. Studies outside of insects and vertebrates show a more diverse picture of what, if any role, BMP signaling plays in neural development across Bilateria.
View Article and Find Full Text PDFShell morphology is a well-suited and underused system to examine the development of novel forms. The three-dimensional structure produced (the shell) is separate from the largely two-dimensional tissue that secretes it (the mantle), allowing us to disentangle the pattern from the process. Despite knowing a great deal about the mechanics of shell secretion (process), and the variety of shell shapes that exist (pattern), no effort has been made to understand how the mantle changes to produce different shell shapes.
View Article and Find Full Text PDFNatural history collections are an important and largely untapped source of long-term data on evolutionary changes in wild populations. Here, we utilize three large geo-referenced sets of samples of the common European land-snail stored in the collection of Naturalis Biodiversity Center in Leiden, the Netherlands. Resampling of these populations allowed us to gain insight into changes occurring over 95, 69, and 50 years.
View Article and Find Full Text PDFGastropod shell sculpture offers a novel tool for studying morphological patterning. Existing shell features may be manipulated experimentally to test how alteration affects subsequent shell growth and form. Axial sculpture occurs in many gastropod groups, and spacing of sculpture may be regular or irregular.
View Article and Find Full Text PDFThe fascinating and often unlikely shell shapes in the terrestrial micromollusc family Diplommatinidae (Gastropoda: Caenogastropoda) provide a particularly attractive set of multiple morphological traits to investigate evolutionary patterns of shape variation. Here, a molecular phylogenetic reconstruction, based on five genes and 2700 bp, was undertaken for this family, integrated with ancestral state reconstruction and phylogenetic PCA of discrete and quantitative traits, respectively. We found strong support for the Diplommatininae as a monophyletic group, separating the Cochlostomatidae into a separate family.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
September 2008
We hypothesized that magnetic resonance magnetization transfer (MT) imaging would be sensitive for detecting cerebral ischemic injury in white matter of neonatal brain. We compared the progression of changes in T(2) and the MT ratio (MTR) after cerebral hypoxic-ischemic insults of differing severity in neonatal rats. Magnetization transfer imaging parameters were first optimized, and then MTR and T(2) maps were acquired at various times after a mild (rather selective white matter) or substantial insult produced by unilateral cerebral hypoxia-ischemia.
View Article and Find Full Text PDF