Publications by authors named "Nicole A Cheung"

To successfully mount infections, nearly all bacterial pathogens must acquire iron, a key metal cofactor that primarily resides within human hemoglobin. causes the life-threatening respiratory disease diphtheria and captures hemoglobin for iron scavenging using the surface-displayed receptor HbpA. Here, we show using X-ray crystallography, NMR, and in situ binding measurements that selectively captures iron-loaded hemoglobin by partially ensconcing the heme molecules of its α subunits.

View Article and Find Full Text PDF

Academic departments, research clusters and evaluators analyze author and citation data to measure research impact and to support strategic planning. We created Scholar Metrics Scraper (SMS) to automate the retrieval of bibliometric data for a group of researchers. The project contains Jupyter notebooks that take a list of researchers as an input and exports a CSV file of citation metrics from Google Scholar (GS) to visualize the group's impact and collaboration.

View Article and Find Full Text PDF

Gram-positive bacteria display pili whose protein components (pilins) are covalently crosslinked by pilus-specific sortase enzymes. These cysteine transpeptidase enzymes catalyze a transpeptidation reaction that joins the pilins together via lysine isopeptide bonds. The crosslinking reaction that builds the SpaA pilus in Corynebacterium diphtheriae is mediated by the SrtA sortase (SrtA) and has been reconstituted in vitro.

View Article and Find Full Text PDF

Many species of pathogenic gram-positive bacteria display covalently crosslinked protein polymers (called pili or fimbriae) that mediate microbial adhesion to host tissues. These structures are assembled by pilus-specific sortase enzymes that join the pilin components together via lysine-isopeptide bonds. The archetypal SpaA pilus from Corynebacterium diphtheriae is built by the SrtA pilus-specific sortase, which crosslinks lysine residues within the SpaA and SpaB pilins to build the shaft and base of the pilus, respectively.

View Article and Find Full Text PDF

Many species of pathogenic gram-positive bacteria display covalently crosslinked protein polymers (called pili or fimbriae) that mediate microbial adhesion to host tissues. These structures are assembled by pilus-specific sortase enzymes that join the pilin components together via lysine-isopeptide bonds. The archetypal SpaA pilus from is built by the SrtA pilus-specific sortase, which crosslinks lysine residues within the SpaA and SpaB pilins to build the shaft and base of the pilus, respectively.

View Article and Find Full Text PDF