Purpose: To evaluate visuo-cognitive sequelae following blast-induced traumatic brain injury in a rat model.
Methods: Rats were randomly assigned to one of four groups depending on the intensity/quantity of a blast received in a blast chamber: sham (no blast), low intensity (22 psi), medium intensity (26 psi), or three medium intensity blasts (26 psi × 3). After recovery, all subjects were given visual discrimination tasks of increasing complexity, until mastery.
The purpose of this study was to examine the effect of a blast exposure generated from a shock tube on retinal ganglion cell (RGC) function and structure. Mice were exposed to one of three blast conditions using a shock tube; a single blast wave of 20 PSI, a single blast wave of 30 PSI, or three blast waves of 30 PSI given on three consecutive days with a one-day inter-blast interval. The structure and function of the retina were analyzed using the pattern electroretinogram (PERG), the optomotor reflex (OMR), and optical coherence tomography (OCT).
View Article and Find Full Text PDFPurpose: The purpose of this study was to examine the role of the immune system and its influence on chronic retinal ganglion cell (RGC) dysfunction following blast-mediated traumatic brain injury (bTBI).
Methods: C57BL/6J and B6.129S7-Rag1/J (Rag) mice were exposed to one blast injury of 140 kPa.
Invest Ophthalmol Vis Sci
June 2021
Purpose: The purpose of this study was to examine the influence of genetic background on the retinal ganglion cell (RGC) response to blast-mediated traumatic brain injury (TBI) in Jackson Diversity Outbred (J:DO), C57BL/6J and BALB/cByJ mice.
Methods: Mice were subject to one blast injury of 137 kPa. RGC structure was analyzed by optical coherence tomography (OCT), function by the pattern electroretinogram (PERG), and histologically using BRN3A antibody staining.
Traumatic brain injuries (TBI) of varied types are common across all populations and can cause visual problems. For military personnel in combat settings, injuries from blast exposures (bTBI) are prevalent and arise from a myriad of different situations. To model these diverse conditions, we are one of several groups modeling bTBI using mice in varying ways.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
October 2020
Purpose: In a mouse model of blast-mediated traumatic brain injury (bTBI), interleukin-1 (IL-1)-pathway components were tested as potential therapeutic targets for bTBI-mediated retinal ganglion cell (RGC) dysfunction. Sex was also evaluated as a variable for RGC outcomes post-bTBI.
Methods: Male and female mice with null mutations in genes encoding IL-1α, IL-1β, or IL-1RI were compared to C57BL/6J wild-type (WT) mice after exposure to three 20-psi blast waves given at an interblast interval of 1 hour or to mice receiving sham injury.
Invest Ophthalmol Vis Sci
October 2019
Purpose: The purpose of this study was to examine the effect of multiple blast exposures and blast preconditioning on the structure and function of retinal ganglion cells (RGCs), to identify molecular pathways that contribute to RGC loss, and to evaluate the role of kynurenine-3-monooxygenase (KMO) inhibition on RGC structure and function.
Methods: Mice were subjected to sham blast injury, one single blast injury, or three blast injuries separated by either 1 hour or 1 week, using a blast intensity of 20 PSI. To examine the effect of blast preconditioning, mice were subjected to sham blast injury, one single 20-PSI injury, or three blast injuries separated by 1 week (5 PSI, 5 PSI, 20 PSI and 5 PSI, 5 PSI, 5 PSI).