Polyphosphazenes represent a class of intrinsically flexible polyelectrolytes with potent immunoadjuvant activity, which is enabled through non-covalent self-assembly with antigenic proteins by charge complexation. The formation of supramolecular complexes between polyphosphazene adjuvant, poly[di(carboxylatophenoxy)phosphazene] (PCPP), and a model vaccine antigen, hen egg lysozyme, was studied under physiological conditions using automated dynamic light scattering titration, asymmetric flow field flow fractionation (AF4), enzyme-linked immunosorbent assay (ELISA), and fluorescent quenching methods. Three regimes of self-assembly were observed covering complexation of PCPP with lysozyme in the nano-scale range, multi-chain complexes, and larger aggregates with complexes characterized by a maximum loading of over six hundred protein molecules per PCPP chain and dissociation constant in the micromolar range ( = 7 × 10 mol/L).
View Article and Find Full Text PDFPreceramic polymers (PCPs) are a group of specialty macromolecules that serve as precursors for generating inorganics, including ceramic carbides, nitrides, and borides. PCPs represent interesting synthetic challenges for chemists due to the elements incorporated into their structure. This group of polymers is also of interest to engineers as PCPs enable the processing of polymer-derived ceramic products including high-performance ceramic fibers and composites.
View Article and Find Full Text PDFBiomacromolecules
January 2022
There is significant potential in exploiting antibody specificity to develop new therapeutic treatments. However, intracellular protein delivery is a paramount challenge because of the difficulty in transporting large, polar molecules across cell membranes. Cell-penetrating peptide mimics (CPPMs) are synthetic polymers that are versatile materials for intracellular delivery of biological molecules, including nucleic acids and proteins, with superior performance compared to their natural counterparts and commercially available peptide-based reagents.
View Article and Find Full Text PDFA synthetic strategy yielded polyelectrolytes and polyampholytes with tunable net charge for complexation and protein binding. Organocatalytic ring-opening polymerizations yielded aliphatic polycarbonates that were functionalized with both carboxylate and ammonium side chains in a post-polymerization, radical-mediated thiol-ene reaction. Incorporating net charge into the polymer architecture altered the chain dimensions in phosphate buffered solution in a manner consistent with self-complexation and complexation behavior with model proteins.
View Article and Find Full Text PDFOver the past decade, extensive optimization of polymeric cell-penetrating peptide (CPP) mimics (CPPMs) by our group has generated a substantial library of broadly effective carriers which circumvent the need for covalent conjugation often required by CPPs. In this study, design rules learned from CPPM development were applied to reverse-engineer the first library of simple amphiphilic block copolypeptides for non-covalent protein delivery, namely, poly(alanine--arginine), poly(phenylalanine--arginine), and poly(tryptophan--arginine). This new CPP library was screened for enhanced green fluorescent protein and Cre recombinase delivery alongside a library of CPPMs featuring equivalent side-chain configurations.
View Article and Find Full Text PDFIntracellular protein delivery is an invaluable tool for biomedical research, as it enables fundamental studies of cellular processes and creates opportunities for novel therapeutic development. Protein delivery reagents such as cell penetration peptides (CPPs) and protein transduction domains (PTDs) are frequently used to facilitate protein delivery. Herein, synthetic polymer mimics of PTDs, called PTDMs, were studied for their ability to self-assemble in aqueous media as it was not known whether self-assembly plays a role in the protein binding and delivery process.
View Article and Find Full Text PDFFunctional protein delivery has created new opportunities for studying intracellular processes and discovering new therapeutics. To that end, researchers have pursued intracellular protein delivery by using an increasing number of methods. This focus review will highlight polymeric carriers that non-covalently bind and deliver protein cargo in vitro.
View Article and Find Full Text PDFBioconjug Chem
August 2018
Delivering proteins into the intracellular environment is a critical step toward probing vital cellular processes for the purposes of ultimately developing new therapeutics. Polymeric carriers are widely used to facilitate protein delivery with guanidinium-rich macromolecules leading the way within this category. Although binding interactions between natural proteins and synthetic polymers have been studied extensively, the relationship between polymer-protein binding and intracellular delivery is seldom explored.
View Article and Find Full Text PDFExploring the role of polymer structure for the internalization of biologically relevant cargo, specifically siRNA, is of critical importance to the development of improved delivery reagents. Herein, we report guanidinium-rich protein transduction domain mimics (PTDMs) based on a ring-opening metathesis polymerization scaffold containing tunable hydrophobic moieties that promote siRNA internalization. Structure-activity relationships using Jurkat T cells and HeLa cells were explored to determine how the length of the hydrophobic block and the hydrophobic side chain compositions of these PTDMs impacted siRNA internalization.
View Article and Find Full Text PDF