In this study, we use pan-genomics to characterize the genomic variability of the widely dispersed halophilic archaeal species ). We include a multi-regional sampling of newly sequenced, high-quality draft genomes. The pan-genome graph of the species reveals 50 genomic islands that represent rare accessory genetic capabilities available to members.
View Article and Find Full Text PDFPolyploidy, the phenomenon of having more than one copy of the genome in an organism, is common among haloarchaea. While providing short-term benefits for DNA repair, polyploidy is generally regarded as an "evolutionary trap" that by the notion of the Muller's ratchet will inevitably conclude in the species' decline or even extinction due to a gradual reduction in fitness. In most reported cases of polyploidy in archaea, the genetic state of the organism is considered as homoploidy i.
View Article and Find Full Text PDFAnnu Rev Microbiol
September 2022
Archaea remains the least-studied and least-characterized domain of life despite its significance not just to the ecology of our planet but also to the evolution of eukaryotes. It is therefore unsurprising that research into horizontal gene transfer (HGT) in archaea has lagged behind that of bacteria. Indeed, several archaeal lineages may owe their very existence to large-scale HGT events, and thus understanding both the molecular mechanisms and the evolutionary impact of HGT in archaea is highly important.
View Article and Find Full Text PDFInteins are selfish genetic elements residing in open reading frames that can splice post-translationally, resulting in the ligation of an uninterrupted, functional protein. Like other inteins, the DNA polymerase B (PolB) intein of the halophilic archaeon has an active homing endonuclease (HEN) domain, facilitating its horizontal transmission. Previous work has shown that the presence of the PolB intein exerts a significant fitness cost on the organism compared to an intein-free isogenic .
View Article and Find Full Text PDFCRISPR-Cas systems provide prokaryotes with sequence-specific immunity against viruses and plasmids based on DNA acquired from these invaders, known as spacers. Surprisingly, many archaea possess spacers that match chromosomal genes of related species, including those encoding core housekeeping genes. By sequencing genomes of environmental archaea isolated from a single site, we demonstrate that inter-species spacers are common.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2016
Inteins are parasitic genetic elements that excise themselves at the protein level by self-splicing, allowing the formation of functional, nondisrupted proteins. Many inteins contain a homing endonuclease (HEN) domain and rely on its activity for horizontal propagation. However, successful invasion of an entire population will make this activity redundant, and the HEN domain is expected to degenerate quickly under these conditions.
View Article and Find Full Text PDFProtein acetylation and deacetylation reactions are involved in many regulatory processes in eukaryotes. Recently, it was found that similar processes occur in bacteria and archaea. Sequence analysis of the genome of the haloarchaeon Haloferax volcanii led to the identification of three putative protein acetyltransferases belonging to the Gcn5 family, Pat1, Pat2, and Elp3, and two deacetylases, Sir2 and HdaI.
View Article and Find Full Text PDFMol Microbiol
December 2004
Whereas tetrahydrofolate is an essential cofactor in all bacteria, the gene that encodes the enzyme dihydrofolate reductase (DHFR) could not be identified in many of the bacteria whose genomes have been entirely sequenced. In this communication we show that the halophilic archaea Halobacterium salinarum and Haloarcula marismortui contain genes coding for proteins with an N-terminal domain homologous to dihydrofolate synthase (FolC) and a C-terminal domain homologous to dihydropteroate synthase (FolP). These genes are able to complement a Haloferax volcanii mutant that lacks DHFR.
View Article and Find Full Text PDFJ Bacteriol
December 2003
Escherichia coli (thyA DeltafolA) mutants are viable and can grow in minimal medium when supplemented with thymidine alone. Here we present evidence from in vivo and in vitro studies that the ydgB gene determines an alternative dihydrofolate reductase that is related to the trypanosomatid pteridine reductases. We propose to rename this gene folM.
View Article and Find Full Text PDF